Skip to main content
Log in

An Insight into Reprogramming Barriers to iPSC Generation

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming somatic cells to a pluripotent state has revolutionized stem cell research. Ensuing this, various groups have used genetic and non-genetic approaches to generate iPSCs from numerous cell types. However, achieving a pluripotent state in most of the reprogramming studies is marred by serious limitations such as low reprogramming efficiency and slow kinetics. These limitations are mainly due to the presence of potent barriers that exist during reprogramming when a mature cell is coaxed to achieve a pluripotent state. Several studies have revealed that intrinsic factors such as non-optimal stoichiometry of reprogramming factors, specific signaling pathways, cellular senescence, pluripotency-inhibiting transcription factors and microRNAs act as a roadblock. In addition, the epigenetic state of somatic cells and specific epigenetic modifications that occur during reprogramming also remarkably impede the generation of iPSCs. In this review, we present a comprehensive overview of the barriers that inhibit reprogramming and the understanding of which will pave the way to develop safe strategies for efficient reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    CAS  PubMed  Google Scholar 

  2. Seifinejad, A., Tabebordbar, M., Baharvand, H., Boyer, L. A., & Hosseini Salekdeh, G. (2010). Progress and promise towards safe induced pluripotent stem cells for therapy. Stem Cell Reviews and Reports, 6(2), 297–306.

    PubMed  Google Scholar 

  3. Young, W. (2012). Patient-specific induced pluripotent stem cells as a platform for disease modeling, drug discovery and precision personalized medicine. Journal of Stem Cell Research & Therapy, 01(S10), 2.

    Google Scholar 

  4. Singh, V. K., Kalsan, M., Kumar, N., Saini, A., & Chandra, R. (2015). Induced pluripotent stem cells: Applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology, 3, 2.

    PubMed  PubMed Central  Google Scholar 

  5. Omole, A. E., & Fakoya, A. O. J. (2018). Ten years of progress and promise of induced pluripotent stem cells: Historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ, 6, e4370.

    PubMed  PubMed Central  Google Scholar 

  6. Patel, M., & Yang, S. (2010). Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Reviews and Reports, 6(3), 367–380.

    CAS  PubMed  Google Scholar 

  7. Walia, B., Satija, N., Tripathi, R. P., & Gangenahalli, G. U. (2012). Induced pluripotent stem cells: Fundamentals and applications of the reprogramming process and its ramifications on regenerative medicine. Stem Cell Reviews and Reports, 8(1), 100–115.

    CAS  PubMed  Google Scholar 

  8. Hu, K. (2014). All roads lead to induced pluripotent stem cells: The technologies of iPSC generation. Stem Cells and Development, 23(12), 1285–1300.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chhabra, A. (2017). Derivation of human induced pluripotent stem cell (iPSC) lines and mechanism of pluripotency: Historical perspective and recent advances. Stem Cell Reviews and Reports, 13(6), 757–773.

    CAS  PubMed  Google Scholar 

  10. Saha, B., Borgohain, M. P., Dey, C., & Thummer, R. P. (2018). iPS cell generation: Current and future challenges. Annals of Stem Cell Research and Therapy, 1(2), 1007.

    Google Scholar 

  11. Borgohain, M. P., Haridhasapavalan, K. K., Dey, C., Adhikari, P., & Thummer, R. P. (2019). An insight into DNA-free reprogramming approaches to generate integration-free induced pluripotent stem cells for prospective biomedical applications. Stem Cell Reviews and Reports, 15(2), 286–313.

    CAS  PubMed  Google Scholar 

  12. Haridhasapavalan, K. K., Borgohain, M. P., Dey, C., Saha, B., Narayan, G., Kumar, S., & Thummer, R. P. (2018). An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene, 686, 146–159.

    PubMed  Google Scholar 

  13. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    CAS  PubMed  Google Scholar 

  14. Sridharan, R., Tchieu, J., Mason, M. J., Yachechko, R., & Kuoy, E. (2009). Resource role of the Murine reprogramming factors in the induction of pluripotency. Cell, 136(2), 364–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Papapetrou, E. P., Tomishima, M. J., Chambers, S. M., Mica, Y., Reed, E., & Menon, J. (2009). Stoichiometric and temporal requirements of Oct4 , Sox2 , Klf4 , and c-Myc expression for efficient human iPSC induction and differentiation. Proceedings of the National Academy of Sciences USA, 106(31), 12759–12764.

    CAS  Google Scholar 

  16. Tiemann, U., Sgodda, M., Warlich, E., Ballmaier, M., Schöler, H. R., Schambach, A., & Cantz, T. (2011). Optimal reprogramming factor stoichiometry increases colony numbers and affects molecular characteristics of murine induced pluripotent stem cells. Cytometry Part A, 79(6), 426–435.

    Google Scholar 

  17. Carey, B. W., Markoulaki, S., Hanna, J. H., Faddah, D. A., Buganim, Y., Kim, J., et al. (2011). Short article reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Stem Cells, 9(6), 588–598.

    CAS  Google Scholar 

  18. Stefanovic, S., & Pucéat, M. (2007). Oct-3/4: Not just a gatekeeper of pluripotency for embryonic stem cell, a cell fate instructor through a gene dosage effect. Cell Cycle, 6(1), 8–10.

    CAS  PubMed  Google Scholar 

  19. Karwacki-Neisius, V., Göke, J., Osorno, R., Halbritter, F., Ng, J. H., Weiße, A. Y., et al. (2013). Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell, 12(5), 531–545.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stefanovic, S., Abboud, N., Désilets, S., Nury, D., Cowan, C., & Pucéat, M. (2009). Interplay of Oct4 with Sox2 and Sox17: A molecular switch from stem cell pluripotency to specifying a cardiac fate. Journal of Cell Biology, 186(5), 665–673.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wen, W., Zhang, J.-P., Xu, J., Su, R. J., Neises, A., Ji, G.-Z., et al. (2016). Enhanced generation of integration-free iPSCs from human adult peripheral blood mononuclear cells with an optimal combination of episomal vectors. Stem Cell Reports, 6(6), 873–884.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmitt, C. E., Morales, B. M., Schmitz, E. M. H., Hawkins, J. S., Lizama, C. O., Zape, J. P., et al. (2017). Fluorescent tagged episomals for stoichiometric induced pluripotent stem cell reprogramming. Stem Cell Research and Therapy, 8(1), 132.

    PubMed  PubMed Central  Google Scholar 

  23. Nagamatsu, G., Saito, S., Kosaka, T., Takubo, K., Kinoshita, T., Oya, M., et al. (2012). Optimal ratio of transcription factors for somatic cell reprogramming. Journal of Biological Chemistry, 287(43), 36273–36282.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamaguchi, S., Hirano, K., Nagata, S., & Tada, T. (2011). Sox2 expression effects on direct reprogramming efficiency as determined by alternative somatic cell fate. Stem Cell Research, 6(2), 177–186.

    CAS  PubMed  Google Scholar 

  25. Sommer, C. A., Christodoulou, C., Gianotti-Sommer, A., Shen, S. S., Sailaja, B. S., Hezroni, H., et al. (2012). Residual expression of reprogramming factors affects the transcriptional program and epigenetic signatures of induced pluripotent stem cells. PLOS ONE, 7(12), 1–10.

    Google Scholar 

  26. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    CAS  PubMed  Google Scholar 

  27. Vogt, P. K. (2002). Fortuitous convergences: The beginnings of JUN. Nature Reviews Cancer, 2(6), 465–469.

    CAS  PubMed  Google Scholar 

  28. Hilberg, F., Aguzzi, A., Howells, N., & Wagner, E. F. (1993). c-Jun is essential for normal mouse development and hepatogenesis. Nature, 365(6442), 179.

    CAS  PubMed  Google Scholar 

  29. Liu, J., Han, Q., Peng, T., Peng, M., Wei, B., Li, D., et al. (2015). The oncogene c-Jun impedes somatic cell reprogramming. Nature Cell Biology, 17(7), 856–867.

    CAS  PubMed  Google Scholar 

  30. Schreiber, M., Kolbus, A., Piu, F., Szabowski, A., Möhle-Steinlein, U., Tian, J., et al. (1999). Control of cell cycle progression by c-Jun is p53 dependent. Genes and Development, 13(5), 607–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H., et al. (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 7(1), 51–63.

    CAS  PubMed  Google Scholar 

  32. Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H. K., Beyer, T. A., Datti, A., et al. (2010). Functional genomics reveals a BMP-Driven mesenchymal-to-Epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 7(1), 64–77.

    CAS  PubMed  Google Scholar 

  33. Li, D., Liu, J., Yang, X., Zhou, C., Guo, J., Wu, C., et al. (2017). Chromatin accessibility dynamics during iPSC reprogramming. Cell Stem Cell, 21(6), 819–833.e6.

    CAS  PubMed  Google Scholar 

  34. Cadigan, K. M., & Waterman, M. L. (2012). TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harbor Perspectives in Biology, 4(11), a007906.

    PubMed  PubMed Central  Google Scholar 

  35. Pereira, L., Yi, F., & Merrill, B. J. (2006). Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Molecular and Cellular Biology, 26(20), 7479–7491.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lluis, F., Ombrato, L., Pedone, E., Pepe, S., Merrill, B. J., & Cosma, M. P. (2011). T-cell factor 3 (Tcf3) deletion increases somatic cell reprogramming by inducing epigenome modifications. Proceedings of the National Academy of Sciences USA, 108(29), 11912–11917.

    CAS  Google Scholar 

  37. Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H., & Young, R. A. (2008). Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes and Development, 22(6), 746–755.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tam, W.-L., Lim, C. Y., Han, J., Zhang, J., Ang, Y.-S., Ng, H.-H., et al. (2008). T-Cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells, 26(8), 2019–2031.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ye, S., Zhang, T., Tong, C., Zhou, X., He, K., Ban, Q., et al. (2017). Depletion of Tcf3 and Lef1 maintains mouse embryonic stem cell self-renewal. Biology Open, 6(4), 511–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ho, R., Papp, B., Hoffman, J. A., Merrill, B. J., & Plath, K. (2013). Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins. Cell Reports, 3(6), 2113–2126.

    CAS  PubMed  Google Scholar 

  41. Lin, D., Ippolito, G. C., Zong, R. T., Bryant, J., Koslovsky, J., & Tucker, P. (2007). Bright/ARID3A contributes to chromatin accessibility of the immunoglobulin heavy chain enhancer. Molecular Cancer, 6(1), 23.

    PubMed  PubMed Central  Google Scholar 

  42. Webb, C. F., Bryant, J., Popowski, M., Allred, L., Kim, D., Harriss, J., et al. (2011). The ARID family transcription factor bright is required for both hematopoietic stem cell and B lineage development. Molecular and Cellular Biology, 31(5), 1041–1053.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. An, G., Miner, C. A., Nixon, J. C., Kincade, P. W., Bryant, J., Tucker, P. W., & Webb, C. F. (2010). Loss of bright/ARID3a function promotes developmental plasticity. Stem Cells, 28(9), 1560–1567.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Popowski, M., Templeton, T. D., Lee, B. K., Rhee, C., Li, H., Miner, C., et al. (2014). Bright/Arid3A acts as a barrier to somatic cell reprogramming through direct regulation of Oct4, Sox2, and Nanog. Stem Cell Reports, 2(1), 26–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Serrano, F., Calatayud, C. F., Blazquez, M., Torres, J., Castell, J. V., & Bort, R. (2013). Gata4 blocks somatic cell reprogramming by directly repressing Nanog. Stem Cells, 31(1), 71–82.

    CAS  PubMed  Google Scholar 

  46. Fidalgo, M., Faiola, F., Pereira, C.-F., Ding, J., Saunders, A., Gingold, J., et al. (2012). Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming. Proceedings of the National Academy of Sciences USA, 109(40), 16202–16207.

    CAS  Google Scholar 

  47. Ma, H., Ow, J. R., Tan, B. C. P., Goh, Z., Feng, B., Loh, Y. H., et al. (2014). The dosage of Patz1 modulates reprogramming process. Scientific Reports, 4, 7519.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313.

    CAS  PubMed  Google Scholar 

  49. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318.

    CAS  PubMed  Google Scholar 

  50. Shu, J., Zhang, K., Zhang, M., Yao, A., Shao, S., Du, F., et al. (2015). GATA family members as inducers for cellular reprogramming to pluripotency. Cell Research, 25(2), 169–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Côté, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.

    CAS  PubMed  Google Scholar 

  52. Zhang, W., Aubert, A., Gomez de Segura, J. M., Karuppasamy, M., Basu, S., Murthy, A. S., et al. (2016). The nucleosome remodeling and deacetylase complex NuRD is built from preformed catalytically active sub-modules. Journal of Molecular Biology, 428(14), 2931–2942.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., & Melton, D. A. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26(7), 795–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Silva, J., Nichols, J., Theunissen, T. W., Guo, G., van Oosten, A. L., Barrandon, O., et al. (2009). Nanog is the gateway to the pluripotent ground state. Cell, 138(4), 722–737.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Allouba, M. H., ElGuindy, A. M., Krishnamoorthy, N., Yacoub, M. H., & Aguib, Y. E. (2015). NaNog: A pluripotency homeobox (master) molecule. Global Cardiology Science & Practice, 2015(3), 36.

    Google Scholar 

  56. Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., et al. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454(7200), 49–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Qin, H., Diaz, A., Blouin, L., Lebbink, R. J., Patena, W., Tanbun, P., et al. (2014). Systematic identification of barriers to human iPSC generation. Cell, 158(2), 449–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chronis, C., Fiziev, P., Papp, B., Butz, S., Bonora, G., Sabri, S., et al. (2017). Cooperative binding of transcription factors orchestrates reprogramming. Cell, 168(3), 442–459.e20.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Knaupp, A. S., Buckberry, S., Pflueger, J., Lim, S. M., Ford, E., Larcombe, M. R., et al. (2017). Transient and permanent reconfiguration of chromatin and transcription factor occupancy drive reprogramming. Cell Stem Cell, 21(6), 834–845.e6.

    CAS  PubMed  Google Scholar 

  60. Meissner, A., Wernig, M., & Jaenisch, R. (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology, 25(10), 1177–1181.

    CAS  PubMed  Google Scholar 

  61. Maherali, N., & Hochedlinger, K. (2009). Tgfβ signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Current Biology, 19(20), 1718–1723.

    CAS  PubMed  Google Scholar 

  62. Subramanyam, D., Lamouille, S., Judson, R. L., Liu, J. Y., Bucay, N., Derynck, R., & Blelloch, R. (2011). Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nature Biotechnology, 29(5), 443–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ichida, J. K., Blanchard, J., Lam, K., Son, E. Y., Chung, J. E., Egli, D., et al. (2009). A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell, 5(5), 491–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vidal, S. E., Amlani, B., Chen, T., Tsirigos, A., & Stadtfeld, M. (2014). Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming. Stem Cell Reports, 3(4), 574–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yuan, X., Wan, H., Zhao, X., Zhu, S., Zhou, Q., & Ding, S. (2011). Brief report: Combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts. Stem Cells, 29(3), 549–553.

    CAS  PubMed  Google Scholar 

  66. Varelas, X. (2014). The hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development (Cambridge), 141(8), 1614–1626.

    CAS  Google Scholar 

  67. Ramos, A., & Camargo, F. D. (2012). The Hippo signaling pathway and stem cell biology. Trends in Cell Biology, 22(7), 339–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tamm, C., Böwer, N., & Annerén, C. (2011). Regulation of mouse embryonic stem cell self-renewal by a Yes–YAP–TEAD2 signaling pathway downstream of LIF. Journal of Cell Science, 124(7), 1136–1144.

    PubMed  Google Scholar 

  69. Lian, I., Kim, J., Okazawa, H., Zhao, J., Zhao, B., Yu, J., et al. (2010). The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes and Development, 24(11), 1106–1118.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chia, N. Y., Chan, Y. S., Feng, B., Lu, X., Orlov, Y. L., Moreau, D., et al. (2010). A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature, 468(7321), 316–320.

    CAS  PubMed  Google Scholar 

  71. Qin, H., Blaschke, K., Wei, G., Ohi, Y., Blouin, L., Qi, Z., et al. (2012). Transcriptional analysis of pluripotency reveals the hippo pathway as a barrier to reprogramming. Human Molecular Genetics, 21(9), 2054–2067.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Varelas, X., Sakuma, R., Samavarchi-Tehrani, P., Peerani, R., Rao, B. M., Dembowy, J., et al. (2008). TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature Cell Biology, 10(7), 837–848.

    CAS  PubMed  Google Scholar 

  73. Zhao, B., Li, L., Tumaneng, K., Wang, C.-Y., & Guan, K.-L. (2010). A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes and Development, 24(1), 72–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Varelas, X., Miller, B. W., Sopko, R., Song, S., Gregorieff, A., Fellouse, F. A., et al. (2010). The Hippo pathway regulates Wnt/β-catenin signaling. Developmental Cell, 18(4), 579–591.

    CAS  PubMed  Google Scholar 

  75. Heallen, T., Zhang, M., Wang, J., Bonilla-Claudio, M., Klysik, E., Johnson, R. L., & Martin, J. F. (2011). Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science (New York, N.Y.), 332(6028), 458–461.

    CAS  Google Scholar 

  76. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10(1), 55–63.

    CAS  PubMed  Google Scholar 

  77. Hao, J., Li, T. G., Qi, X., Zhao, D. F., & Zhao, G. Q. (2006). WNT/β-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Developmental Biology, 290(1), 81–91.

    CAS  PubMed  Google Scholar 

  78. Xu, Z., Robitaille, A. M., Berndt, J. D., Davidson, K. C., Fischer, K. A., Mathieu, J., et al. (2016). Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells. Proceedings of the National Academy of Sciences USA, 113(42), E6382–E6390.

    CAS  Google Scholar 

  79. Lluis, F., Pedone, E., Pepe, S., & Cosma, M. P. (2008). Periodic activation of Wnt/β-catenin signaling enhances somatic cell reprogramming mediated by cell fusion. Cell Stem Cell, 3(5), 493–507.

    CAS  PubMed  Google Scholar 

  80. Marson, A., Foreman, R., Chevalier, B., Bilodeau, S., Kahn, M., Young, R. A., & Jaenisch, R. (2008). Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell, 3(2), 132–135.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Silva, J., Barrandon, O., Nichols, J., Kawaguchi, J., Theunissen, T. W., & Smith, A. (2008). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLOS Biology, 6(10), 2237–2247.

    CAS  Google Scholar 

  82. Li, W., Zhou, H., Abujarour, R., Zhu, S., Young Joo, J., Lin, T., et al. (2009). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells, 27(12), 2992–3000.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, Z., & Rana, T. M. (2012). A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation. Nature Communications, 3, 1011–1085.

    Google Scholar 

  84. Neganova, I., Shmeleva, E., Munkley, J., Chichagova, V., Anyfantis, G., Anderson, R., et al. (2016). JNK/SAPK signaling is essential for efficient reprogramming of human fibroblasts to induced pluripotent stem cells. Stem Cells, 34(5), 1198–1212.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Qi, X., Li, T.-G., Hao, J., Hu, J., Wang, J., Simmons, H., et al. (2004). BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proceedings of the National Academy of Sciences USA, 101(16), 6027–6032.

    CAS  Google Scholar 

  86. Li, J., Wang, G., Wang, C., Zhao, Y., Zhang, H., Tan, Z., et al. (2007). MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation, 75(4), 299–307.

    CAS  PubMed  Google Scholar 

  87. Lai, W.-H., Ho, J. C.-Y., Lee, Y.-K., Ng, K.-M., Au, K.-W., Chan, Y.-C., et al. (2010). ROCK inhibition facilitates the generation of human-induced pluripotent stem cells in a defined, feeder-, and serum-free system. Cellular Reprogramming, 12(6), 641–653.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin, Z., Liu, F., Shi, P., Song, A., Huang, Z., Zou, D., et al. (2018). Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C. Stem Cell Research and Therapy, 9(1), 47.

    PubMed  PubMed Central  Google Scholar 

  89. Staerk, J., Lyssiotis, C. A., Medeiro, L. A., Bollong, M., Foreman, R. K., Zhu, S., et al. (2011). Pan-Src family kinase inhibitors replace Sox2 during the direct reprogramming of somatic cells. Angewandte Chemie International Edition (English), 50(25), 5734–5736.

    CAS  Google Scholar 

  90. Kishigami, S., & Mishina, Y. (2005). BMP signaling and early embryonic patterning. Cytokine and Growth Factor Reviews, 16(3), 265–278.

    CAS  PubMed  Google Scholar 

  91. Xu, R.-H., Chen, X., Li, D. S., Li, R., Addicks, G. C., Glennon, C., et al. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nature Biotechnology, 20(12), 1261–1264.

    CAS  PubMed  Google Scholar 

  92. Zhang, P., Li, J., Tan, Z., Wang, C., Liu, T., Chen, L., et al. (2008). Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood, 111(4), 1933–1941.

    CAS  PubMed  Google Scholar 

  93. Richter, A., Valdimarsdottir, L., Hrafnkelsdottir, H. E., Runarsson, J. F., Omarsdottir, A. R., Oostwaard, D. W., et al. (2014). BMP4 promotes EMT and mesodermal commitment in human embryonic stem cells via SLUG and MSX2. Stem Cells, 32(3), 636–648.

    CAS  PubMed  Google Scholar 

  94. Chen, J. J., Liu, H., Liu, J., Qi, J., Wei, B., Yang, J., et al. (2012). H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nature Genetics, 45(1), 34.

    PubMed  Google Scholar 

  95. Hamasaki, M., Hashizume, Y., Yamada, Y., Katayama, T., Hohjoh, H., Fusaki, N., et al. (2012). Pathogenic mutation of ALK2 inhibits induced pluripotent stem cell reprogramming and maintenance: Mechanisms of reprogramming and strategy for drug identification. Stem Cells, 30(11), 2437–2449.

    CAS  PubMed  Google Scholar 

  96. Hayashi, Y., Hsiao, E. C., Sami, S., Lancero, M., Schlieve, C. R., Nguyen, T., et al. (2016). BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. Proceedings of the National Academy of Sciences USA, 113(46), 13057–13062.

    CAS  Google Scholar 

  97. Lin, L., Liang, L., Yang, X., Sun, H., Li, Y., Pei, D., & Zheng, H. (2018). The homeobox transcription factor MSX2 partially mediates the effects of bone morphogenetic protein 4 (BMP4) on somatic cell reprogramming. Journal of Biological Chemistry, 293(38), 14905–14915.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Utikal, J., Polo, J. M., Stadtfeld, M., Maherali, N., Kulalert, W., Walsh, R. M., et al. (2009). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature, 460(7259), 1145–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Collado, M., Blasco, M. A., & Serrano, M. (2007). Cellular senescence in cancer and aging. Cell, 130(2), 223–233.

    CAS  PubMed  Google Scholar 

  100. Marion, R. M., Strati, K., Li, H., Tejera, A., Schoeftner, S., Ortega, S., et al. (2009). Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell, 4(2), 141–154.

    CAS  PubMed  Google Scholar 

  101. Kawamura, T., Suzuki, J., Wang, Y. V., Menendez, S., Morera, L. B., Raya, A., et al. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460(7259), 1140–1144.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., et al. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 460(7259), 1132–1135.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Banito, A., Rashid, S. T., Acosta, J. C., De Li, S., Pereira, C. F., Geti, I., et al. (2009). Senescence impairs successful reprogramming to pluripotent stem cells. Genes and Development, 23(18), 2134–2139.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jiang, J., Lv, W., Ye, X., Wang, L., Zhang, M., Yang, H., et al. (2012). Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Research, 23(1), 92–106.

    PubMed  PubMed Central  Google Scholar 

  105. Marión, R. M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., et al. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 460(7259), 1149–1153.

    PubMed  PubMed Central  Google Scholar 

  106. Zhao, Y., Yin, X., Qin, H., Zhu, F., Liu, H., Yang, W., et al. (2008). Two supporting factors greatly improve the efficiency of human iPSC generation. Stem Cells, 3(5), 475–479.

    CAS  Google Scholar 

  107. Li, H., Collado, M., Villasante, A., Strati, K., Ortega, S., Cãamero, M., et al. (2009). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature, 460(7259), 1136–1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sarig, R., Rivlin, N., Brosh, R., Bornstein, C., Kamer, I., Ezra, O., et al. (2010). Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. Journal of Experimental Medicine, 207(10), 2127–2140.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Horikawa, I., Park, K. Y., Isogaya, K., Hiyoshi, Y., Li, H., Anami, K., et al. (2017). Δ133P53 represses P53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death and Differentiation, 24(6), 1017–1028.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hanna, J., Saha, K., Pando, B., Van Zon, J., Lengner, C. J., Creyghton, M. P., et al. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature, 462(7273), 595–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yoshihara, M., Hayashizaki, Y., & Murakawa, Y. (2017). Genomic instability of iPSCs: Challenges towards their clinical applications. Stem Cell Reviews and Reports, 13(1), 7–16.

    CAS  PubMed  Google Scholar 

  112. Attwood, S., & Edel, M. (2019). iPS-cell technology and the problem of genetic instability—Can it ever be safe for clinical use? Journal of Clinical Medicine, 8(3), 288.

    CAS  PubMed Central  Google Scholar 

  113. Abdelalim, E. M., & Tooyama, I. (2012). The p53 inhibitor, pifithrin-α, suppresses self-renewal of embryonic stem cells. Biochemical and Biophysical Research Communications, 420(3), 605–610.

    CAS  PubMed  Google Scholar 

  114. Zalzman, M., Falco, G., Sharova, L. V., Nishiyama, A., Thomas, M., Lee, S. L., et al. (2010). Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature, 464(7290), 858–863.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Skamagki, M., Correia, C., Yeung, P., Baslan, T., Beck, S., Zhang, C., et al. (2017). ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors. Nature Cell Biology, 19(9), 1037.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Aasen, T., Raya, A., Barrero, M. J., Garreta, E., Consiglio, A., Gonzalez, F., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26(11), 1276–1284.

    CAS  PubMed  Google Scholar 

  117. Tüfekci, K. U., Öner, M. G., Meuwissen, R. L. J., & Genç, Ş. (2014). The role of MicroRNAs in human diseases BT. In M. Yousef & J. Allmer (Eds.), miRNomics: MicroRNA biology and computational analysis (pp. 33–50). Totowa: Humana Press.

    Google Scholar 

  118. Zeng, Z.-L., Lin, X., Tan, L.-L., Liu, Y.-M., Qu, K., & Wang, Z. (2018). MicroRNAs: Important regulators of induced pluripotent stem cell generation and differentiation. Stem Cell Reviews and Reports, 14(1), 71–81.

    CAS  PubMed  Google Scholar 

  119. Wang, Y., Medvid, R., Melton, C., Jaenisch, R., & Blelloch, R. (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genetics, 39(3), 380–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes and Development, 19(4), 489–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S., & Hannon, G. J. (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proceedings of the National Academy of Sciences USA, 102(34), 12135–12140.

    CAS  Google Scholar 

  122. Anokye-Danso, F., Trivedi, C. M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4), 376–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Miyoshi, N., Ishii, H., Nagano, H., Haraguchi, N., Dewi, D. L., Kano, Y., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature MicroRNAs. Cell Stem Cell, 8(6), 633–638.

    CAS  PubMed  Google Scholar 

  124. Judson, R. L., Greve, T. S., Parchem, R. J., & Blelloch, R. (2013). MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nature Structural and Molecular Biology, 20(10), 1227–1237.

    CAS  PubMed  Google Scholar 

  125. Pfaff, N., Fiedler, J., Holzmann, A., Schambach, A., Moritz, T., Cantz, T., & Thum, T. (2011). miRNA screening reveals a new miRNA family stimulating iPS cell generation via regulation of Meox2. EMBO reports, 12(11), 1153–1159.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Choi, Y. J., Lin, C., Ho, J. J., He, X., Okada, N., Bu, P., et al. (2011). miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature Cell Biology, 13(11), 1353–1360.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. He, X., He, L., & Hannon, G. J. (2007). The guardian’s little helper: MicroRNAs in the p53 tumor suppressor network. Cancer Research, 67(23), 11099–11101.

    CAS  PubMed  Google Scholar 

  128. Lee, Y. L., Peng, Q., Fong, S. W., Chen, A. C. H., Lee, K. F., Ng, E. H. Y., et al. (2012). Sirtuin 1 facilitates generation of induced pluripotent stem cells from mouse embryonic fibroblasts through the miR-34a and p53 pathways. PLOS ONE, 7(9), e45633.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Melton, C., Judson, R. L., & Blelloch, R. (2010). Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature, 463(7281), 621–626.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Marson, A., Levine, S. S., Cole, M. F., Frampton, G. M., Brambrink, T., Johnstone, S., et al. (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134(3), 521–533.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Worringer, K. A., Rand, T. A., Hayashi, Y., Sami, S., Takahashi, K., Tanabe, K., et al. (2014). The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell, 14(1), 40–52.

    CAS  PubMed  Google Scholar 

  132. Yang, C. S., Li, Z., & Rana, T. M. (2011). microRNAs modulate iPS cell generation. RNA, 17(8), 1451–1460.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Park, S. Y., Lee, J. H., Ha, M., Nam, J. W., & Kim, V. N. (2009). miR-29 miRNAs activate p53 by targeting p85α and CDC42. Nature Structural and Molecular Biology, 16(1), 23–29.

    CAS  PubMed  Google Scholar 

  134. Li, Z., Dang, J., Chang, K. Y., & Rana, T. M. (2014). MicroRNA-mediated regulation of extracellular matrix formation modulates Somatic cell reprogramming. RNA, 20(12), 1900–1915.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, J., He, Q., Han, C., Gu, H., Jin, L., Li, Q., et al. (2012). P53-facilitated Mir-199a-3P regulates somatic cell reprogramming. Stem Cells, 30(7), 1405–1413.

    CAS  PubMed  Google Scholar 

  136. Pfaff, N., Liebhaber, S., Möbus, S., Beh-Pajooh, A., Fiedler, J., Pfanne, A., et al. (2017). Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors. Stem Cell Research, 20, 70–75.

    CAS  PubMed  Google Scholar 

  137. Zhang, L., Zheng, Y., Sun, Y., Zhang, Y., Yan, J., Chen, Z., & Jiang, H. (2016). MiR-134-Mbd3 axis regulates the induction of pluripotency. Journal of Cellular and Molecular Medicine, 20(6), 1150–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hysolli, E., Tanaka, Y., Su, J., Kim, K. Y., Zhong, T., Janknecht, R., et al. (2016). Regulation of the DNA methylation landscape in human somatic cell reprogramming by the miR-29 family. Stem Cell Reports, 7(1), 43–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A., & Kosik, K. S. (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137(4), 647–658.

    CAS  PubMed  Google Scholar 

  140. Barta, T., Peskova, L., Collin, J., Montaner, D., Neganova, I., Armstrong, L., & Lako, M. (2016). Brief report: Inhibition of miR-145 enhances reprogramming of human dermal fibroblasts to induced pluripotent stem cells. Stem Cells, 34(1), 246–251.

  141. Weinhold, B. (2006). Epigenetics: The science of change, A160–A167.

  142. Armstrong, L. (2012). Epigenetic control of embryonic stem cell differentiation. Stem Cell Reviews and Reports, 8(1), 67–77.

    CAS  PubMed  Google Scholar 

  143. Gonzalez, M., & Li, F. (2012). DNA replication, RNAi and epigenetic inheritance. Epigenetics, 7(1), 14–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Hochedlinger, K., & Jaenisch, R. (2015). Induced pluripotency and epigenetic reprogramming. Cold Spring Harbor Perspectives in Biology, 7(12), a019448.

    PubMed  PubMed Central  Google Scholar 

  145. Li, E., Bestor, T. H., & Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69(6), 915–926.

    CAS  PubMed  Google Scholar 

  146. Okano, M., Bell, D. W., Haber, D. A., & Li, E. (1999). DNA Methyltransferases Dnmt3a and Dnmt3b are essential for De Novo methylation and mammalian development. Cell, 99(3), 247–257.

    CAS  PubMed  Google Scholar 

  147. Mali, P., Chou, B. K., Yen, J., Ye, Z., Zou, J., Dowey, S., et al. (2010). Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells, 28(4), 713–720.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Pasha, Z., Haider, H. K., & Ashraf, M. (2011). Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells. PLOS ONE, 6(8), e23667–e23667.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Epsztejn-Litman, S., Feldman, N., Abu-Remaileh, M., Shufaro, Y., Gerson, A., Ueda, J., et al. (2008). De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Structural & Molecular Biology, 15(11), 1176.

    CAS  Google Scholar 

  150. Li, D., Guo, B., Wu, H., Tan, L., & Lu, Q. (2015). TET family of dioxygenases: Crucial roles and underlying mechanisms. Cytogenetic and Genome Research, 146(3), 171–180.

    CAS  PubMed  Google Scholar 

  151. Gao, Y., Chen, J., Li, K., Wu, T., Huang, B., Liu, W., et al. (2013). Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell, 12(4), 453–469.

    CAS  PubMed  Google Scholar 

  152. Hu, X., Zhang, L., Mao, S. Q., Li, Z., Chen, J., Zhang, R. R., et al. (2014). Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell, 14(4), 512–522.

    CAS  PubMed  Google Scholar 

  153. Costa, Y., Ding, J., Theunissen, T. W., Faiola, F., Hore, T. A., Shliaha, P. V., et al. (2013). NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature, 495(7441), 370–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Doege, C. A., Inoue, K., Yamashita, T., Rhee, D. B., Travis, S., Fujita, R., et al. (2012). Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature, 488(7413), 652–655.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Sardina, J. L., Collombet, S., Tian, T. V., Gómez, A., Di Stefano, B., Berenguer, C., et al. (2018). Transcription factors drive Tet2-mediated enhancer demethylation to reprogram cell fate. Cell Stem Cell, 23(5), 727–741.

    CAS  PubMed  Google Scholar 

  156. Esteban, M. A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6(1), 71–79.

    CAS  PubMed  Google Scholar 

  157. Chung, T., Brena, R. M., Kolle, G., Grimmond, S. M., Berman, B. P., Laird, P. W., et al. (2010). Vitamin C promotes widespread yet specific DNA demethylation of the epigenome in human embryonic stem cells. Stem Cells, 28(10), 1848–1855.

    CAS  PubMed  Google Scholar 

  158. Gao, Y., Han, Z., Li, Q., Wu, Y., Shi, X., Ai, Z., et al. (2015). Vitamin C induces a pluripotent state in mouse embryonic stem cells by modulating micro RNA expression. The FEBS journal, 282(4), 685–699.

    CAS  PubMed  Google Scholar 

  159. Blaschke, K., Ebata, K. T., Karimi, M. M., Zepeda-Martínez, J. A., Goyal, P., Mahapatra, S., et al. (2013). Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 500(7461), 222–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Chen, J., Guo, L., Zhang, L., Wu, H., Yang, J., Liu, H., et al. (2013). Vitamin C modulates TET1 function during somatic cell reprogramming. Nature Genetics, 45(12), 1504.

    CAS  PubMed  Google Scholar 

  161. Bhutani, N., Brady, J. J., Damian, M., Sacco, A., Corbel, S. Y., & Blau, H. M. (2010). Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature, 463(7284), 1042–1047.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Morgan, H. D., Dean, W., Coker, H. A., Reik, W., & Petersen-Mahrt, S. K. (2004). Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: Implications for epigenetic reprogramming. Journal of Biological Chemistry, 279(50), 52353–52360.

    CAS  PubMed  Google Scholar 

  163. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D., & Grewal, S. I. S. (2001). Role of histone H3 Lysine 9 methylation in epigenetic control of heterochromatin assembly. Science, 292(2001), 110–113.

    CAS  PubMed  Google Scholar 

  164. Feldman, N., Gerson, A., Fang, J., Li, E., Zhang, Y., Shinkai, Y., et al. (2006). G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nature Cell Biology, 8(2), 188–194.

    CAS  PubMed  Google Scholar 

  165. Onder, T. T., Kara, N., Cherry, A., Sinha, A. U., Zhu, N., Bernt, K. M., et al. (2012). Chromatin-modifying enzymes as modulators of reprogramming. Nature, 483(7391), 598–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Soufi, A., Donahue, G., & Zaret, K. S. (2012). Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell, 151(5), 994–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Sridharan, R., Gonzales-Cope, M., Chronis, C., Bonora, G., McKee, R., Huang, C., et al. (2013). Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nature Cell Biology, 15(7), 872–882.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Cheloufi, S., Elling, U., Hopfgartner, B., Jung, Y. L., Murn, J., Ninova, M., et al. (2015). The histone chaperone CAF-1 safeguards somatic cell identity. Nature, 528(7581), 218–224.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Lachner, M., O’Carroll, D., Rea, S., Mechtler, K., & Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 410(6824), 116–120.

    CAS  PubMed  Google Scholar 

  170. Zhu, J., Adli, M., Zou, J. Y., Verstappen, G., Coyne, M., Zhang, X., et al. (2013). Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell, 152(3), 642–654.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Sridharan, R., Gonzales-Cope, M., Chronis, C., Bonora, G., McKee, R., Huang, C., et al. (2013). Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nature Cell Biology, 15(7), 872–882.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G., & Rauscher, F. J. (2002). SETDB1: A novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes and Development, 16(8), 919–932.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Miles, D. C., de Vries, N. A., Gisler, S., Lieftink, C., Akhtar, W., Gogola, E., et al. (2017). TRIM28 is an epigenetic barrier to induced pluripotent stem cell reprogramming. Stem Cells, 35(1), 147–157.

    CAS  PubMed  Google Scholar 

  174. Wang, Q., Xu, X., Li, J., Liu, J., Gu, H., Zhang, R., et al. (2011). Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Research, 21(10), 1424.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Cacchiarelli, D., Trapnell, C., Ziller, M. J., Soumillon, M., Cesana, M., Karnik, R., et al. (2015). Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell, 162(2), 412–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Sun, H., Liang, L., Li, Y., Feng, C., Li, L., Zhang, Y., et al. (2016). Lysine-specific histone demethylase 1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch. Scientific Reports, 6, 30903.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Wang, T., Chen, K., Zeng, X., Yang, J., Wu, Y., Shi, X., et al. (2011). The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell, 9(6), 575–587.

    CAS  PubMed  Google Scholar 

  178. Liao, B., Bao, X., Liu, L., Feng, S., Zovoilis, A., Liu, W., et al. (2011). MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. Journal of Biological Chemistry, 286(19), 17359–17364.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. He, J., Kallin, E. M., Tsukada, Y. I., & Zhang, Y. (2008). The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15Ink4b. Nature Structural and Molecular Biology, 15(11), 1169–1175.

    CAS  PubMed  Google Scholar 

  180. Tzatsos, A., Pfau, R., Kampranis, S. C., & Tsichlis, P. N. (2009). Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the lnk4a/Arf locus. Proceedings of the National Academy of Sciences USA, 106(8), 2641–2646. https://doi.org/10.1073/pnas.0813139106.

    Article  Google Scholar 

  181. Liang, G., He, J., & Zhang, Y. (2012). Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nature Cell Biology, 14(5), 457–466.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Jones, B., Su, H., Bhat, A., Lei, H., Bajko, J., Hevi, S., et al. (2008). The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLOS Genetics, 4(9), e1000190.

    PubMed  PubMed Central  Google Scholar 

  183. Ng, H. H., Ciccone, D. N., Morshead, K. B., Oettinger, M. A., & Struhl, K. (2003). Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: A potential mechanism for position-effect variegation. Proceedings of the National Academy of Sciences USA, 100(4), 1820–1825.

    CAS  Google Scholar 

  184. Wood, K., Tellier, M., & Murphy, S. (2018). DOT1L and H3K79 methylation in transcription and genomic stability. Biomolecules, 8(1), 11.

    PubMed Central  Google Scholar 

  185. Mansour, A. A., Gafni, O., Weinberger, L., Zviran, A., Ayyash, M., Rais, Y., et al. (2012). The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature, 488(7411), 409–413.

    CAS  PubMed  Google Scholar 

  186. Gaspar-Maia, A., Qadeer, Z. A., Hasson, D., Ratnakumar, K., Adrian Leu, N., Leroy, G., et al. (2013). MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nature Communications, 4, 1512–1565.

    Google Scholar 

  187. Pasque, V., Radzisheuskaya, A., Gillich, A., Halley-Stott, R. P., Panamarova, M., Zernicka-Goetz, M., et al. (2012). Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. Journal of Cell Science, 125(24), 6094–6104.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Barrero, M. J., Sese, B., Kuebler, B., Bilic, J., Boue, S., Martí, M., & Izpisua Belmonte, J. C. (2013). Macrohistone variants preserve cell identity by preventing the gain of H3K4me2 during reprogramming to pluripotency. Cell Reports, 3(4), 1005–1011.

    CAS  PubMed  Google Scholar 

  189. Seto, E., & Yoshida, M. (2014). Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harbor Perspectives in Biology, 6(4), 1–26.

    CAS  Google Scholar 

  190. Kretsovali, A., Hadjimichael, C., & Charmpilas, N. (2012). Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells International, 2012, 1–10.

    Google Scholar 

  191. Shahbazian, M. D., & Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annual Review of Biochemistry, 76(1), 75–100.

    CAS  PubMed  Google Scholar 

  192. Huynh, N. C.-N., Everts, V., & Ampornaramveth, R. S. (2017). Histone deacetylases and their roles in mineralized tissue regeneration. Bone Reports, 7, 33–40.

    PubMed  PubMed Central  Google Scholar 

  193. Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26(11), 1269–1275.

    CAS  PubMed  Google Scholar 

  194. Liang, G., Taranova, O., Xia, K., & Zhang, Y. (2010). Butyrate promotes induced pluripotent stem cell generation. Journal of Biological Chemistry, 285(33), 25516–25521.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Pandian, G. N., Sato, S., Anandhakumar, C., Taniguchi, J., Takashima, K., Syed, J., et al. (2014). Identification of a small molecule that turns on the pluripotency gene circuitry in human fibroblasts. ACS Chemical Biology, 9(12), 2729–2736.

    CAS  PubMed  Google Scholar 

  196. Zhang, Z., & Wu, W. S. (2013). Sodium butyrate promotes generation of human induced pluripotent stem cells through induction of the miR302/367 cluster. Stem Cells and Development, 22(16), 2268–2277.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Wei, T., Chen, W., Wang, X., Zhang, M., Chen, J., Zhu, S., et al. (2015). An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells. Nucleic Acids Research, 43(11), 5409–5422.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Zhai, Y., Chen, X., Yu, D., Li, T., Cui, J., Wang, G., et al. (2015). Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress. Experimental Cell Research, 337(1), 61–67.

    CAS  PubMed  Google Scholar 

  199. Saunders, A., Huang, X., Fidalgo, M., Reimer, M. H., Faiola, F., Ding, J., et al. (2017). The SIN3A/HDAC corepressor complex functionally cooperates with NANOG to promote pluripotency. Cell Reports, 18(7), 1713–1726.

    CAS  PubMed  Google Scholar 

  200. Pasque, V., Gillich, A., Garrett, N., & Gurdon, J. B. (2011). Histone variant macroH2A confers resistance to nuclear reprogramming. The EMBO Journal, 30(12), 2373–2387.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Pliatska, M., Kapasa, M., Kokkalis, A., Polyzos, A., & Thanos, D. (2018). The histone variant macroH2A blocks cellular reprogramming by inhibiting mesenchymal-to-epithelial transition. Molecular and Cellular Biology, 38(10), e00669–e00617.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Fang, H. T., El Farran, C. A., Xing, Q. R., Zhang, L. F., Li, H., Lim, B., & Loh, Y. H. (2018). Global H3.3 dynamic deposition defines its bimodal role in cell fate transition. Nature Communications, 9(1), 1537.

    PubMed  PubMed Central  Google Scholar 

  203. Jang, C. W., Shibata, Y., Starmer, J., Yee, D., & Magnuson, T. (2015). Histone H3.3 maintains genome integrity during mammalian development. Genes and Development, 29(13), 1377–1393.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Denslow, S. A., & Wade, P. A. (2007). The human Mi-2/NuRD complex and gene regulation. Oncogene, 26(37), 5433–5438.

    CAS  PubMed  Google Scholar 

  205. Le Guezennec, X., Vermeulen, M., Brinkman, A. B., Hoeijmakers, W. A. M., Cohen, A., Lasonder, E., & Stunnenberg, H. G. (2006). MBD2 / NuRD and MBD3 / NuRD, two distinct complexes with different biochemical and functional properties. Molecular and Cellular Biology, 26(3), 843–851.

    PubMed  PubMed Central  Google Scholar 

  206. Menafra, R., & Stunnenberg, H. G. (2014). MBD2 and MBD3: Elusive functions and mechanisms. Frontiers in Genetics, 5, 428.

    PubMed  PubMed Central  Google Scholar 

  207. Luo, M., Ling, T., Xie, W., Sun, H., Zhou, Y., Zhu, Q., et al. (2013). NuRD blocks reprogramming of mouse somatic cells into Pluripotent stem cells. Stem Cells, 31(7), 1278–1286.

    CAS  PubMed  Google Scholar 

  208. Rais, Y., Zviran, A., Geula, S., Gafni, O., Chomsky, E., Viukov, S., et al. (2013). Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 502(7469), 65–70.

    CAS  PubMed  Google Scholar 

  209. Zviran, A., Rais, Y., Mor, N., Novershtern, N., & Hanna, J. (2015). Mbd3/NuRD is a key inhibitory module during the induction and maintenance of naïve pluripotency. bioRxiv, 013961.

  210. Dos Santos, R. L., Tosti, L., Radzisheuskaya, A., Caballero, I. M., Kaji, K., Hendrich, B., & Silva, J. C. R. (2014). MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner. Cell Stem Cell, 15(1), 102–110.

    PubMed  PubMed Central  Google Scholar 

  211. Lee, M. R., Prasain, N., Chae, H. D., Kim, Y. J., Mantel, C., Yoder, M. C., & Broxmeyer, H. E. (2013). Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming. Stem Cells, 31(4), 666–681.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Lu, Y., Loh, Y. H., Li, H., Cesana, M., Ficarro, S. B., Parikh, J. R., et al. (2014). Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells. Cell Stem Cell, 15(1), 92–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhang, W., Feng, G., Wang, L., Teng, F., Wang, L., Li, W., et al. (2018). MeCP2 deficiency promotes cell reprogramming by stimulating IGF1/AKT/mTOR signaling and activating ribosomal protein-mediated cell cycle gene translation. Journal of Molecular Cell Biology, 10(6), 515–526.

    CAS  PubMed  Google Scholar 

  214. Jones, P. L., Veenstra, G. C. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genetics, 19(2), 187.

    CAS  PubMed  Google Scholar 

  215. Takami, Y., Ono, T., Fukagawa, T., Shibahara, K., & Nakayama, T. (2007). Essential role of chromatin assembly factor-1-mediated rapid nucleosome assembly for DNA replication and cell division in vertebrate cells. Molecular Biology of the Cell, 18(1), 129–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Sauer, P. V, Gu, Y., Liu, W. H., Mattiroli, F., Panne, D., Luger, K., & Churchill, M. E. (2018). Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Research, 46(19), 9907–9917.

  217. Houlard, M., Berlivet, S., Probst, A. V., Quivy, J. P., Héry, P., Almouzni, G., & Gérard, M. (2006). CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLOS Genetics, 2(11), 1686–1696.

    CAS  Google Scholar 

  218. Chen, J., Liu, H., Liu, J., Qi, J., Wei, B., Yang, J., et al. (2013). H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nature Genetics, 45(1), 34–42.

    CAS  PubMed  Google Scholar 

  219. Kolundzic, E., Ofenbauer, A., Bulut, S. I., Uyar, B., Baytek, G., Sommermeier, A., et al. (2018). FACT sets a barrier for cell fate reprogramming in caenorhabditis elegans and human cells. Developmental Cell, 46(5), 611–626.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Orphanides, G., LeRoy, G., Chang, C.-H., Luse, D. S., & Reinberg, D. (1998). FACT, a factor that facilitates transcript elongation through nucleosomes. Cell, 92(1), 105–116.

    CAS  PubMed  Google Scholar 

  221. Li, W., Chen, P., Yu, J., Dong, L., Liang, D., Feng, J., et al. (2016). FACT remodels the tetranucleosomal unit of chromatin fibers for gene transcription. Molecular Cell, 64(1), 120–133.

    CAS  PubMed  Google Scholar 

  222. Yang, J., Zhang, X., Feng, J., Leng, H., Li, S., Xiao, J., et al. (2016). The histone chaperone FACT contributes to dna replication-coupled nucleosome assembly. Cell Reports, 14(5), 1128–1141.

    CAS  PubMed  Google Scholar 

  223. Chen, P., Dong, L., Hu, M., Wang, Y. Z., Xiao, X., Zhao, Z., et al. (2018). Functions of FACT in breaking the nucleosome and maintaining its integrity at the single-nucleosome level. Molecular Cell, 71(2), 284–293.

    CAS  PubMed  Google Scholar 

  224. Yang, C., Lopez, C. G., & Rana, T. M. (2011). Discovery of nonsteroidal anti-inflammatory drug and anticancer drug enhancing reprogramming and induced pluripotent stem cell generation. Stem Cells, 29(10), 1528–1536.

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Borkent, M., Bennett, B. D., Lackford, B., Bar-Nur, O., Brumbaugh, J., Wang, L., et al. (2016). A serial shRNA screen for roadblocks to reprogramming identifies the protein modifier SUMO2. Stem Cell Reports, 6(5), 704–716.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Duffy, M. J., Mullooly, M., O’Donovan, N., Sukor, S., Crown, J., Pierce, A., & McGowan, P. M. (2011). The ADAMs family of proteases: New biomarkers and therapeutic targets for cancer? Clinical Proteomics, 8(1), 1–13.

    Google Scholar 

  227. Edwards, D. R., Handsley, M. M., & Pennington, C. J. (2009). The ADAM metalloproteinases. Molecular Aspects of Medicine, 29(5), 258–289.

    Google Scholar 

  228. Scita, G., & Di Fiore, P. P. (2010). The endocytic matrix. Nature, 463(7280), 464–473.

    CAS  PubMed  Google Scholar 

  229. Watanabe, S., & Boucrot, E. (2017). Fast and ultrafast endocytosis. Current Opinion in Cell Biology, 47, 64–71.

    CAS  PubMed  Google Scholar 

  230. Doherty, G. J., & McMahon, H. T. (2009). Mechanisms of endocytosis. Annual Review of Biochemistry, 78(1), 857–902.

    CAS  PubMed  Google Scholar 

  231. McMahon, H. T., & Boucrot, E. (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology, 12(8), 517–533.

    CAS  PubMed  Google Scholar 

  232. Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F., & Wrana, J. L. (2003). Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nature Cell Biology, 5(5), 410.

    PubMed  Google Scholar 

  233. Reits, E. A. J., Benham, A. M., Plougastel, B., Neefjes, J., & Trowsdale, J. (1997). Dynamics of proteasome distribution in living cells. The EMBO journal, 16(20), 6087–6094.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70(1), 503–533.

    CAS  PubMed  Google Scholar 

  235. Tu, Y., Chen, C., Pan, J., Xu, J., Zhou, Z.-G. G., & Wang, C.-Y. Y. (2012). The Ubiquitin Proteasome Pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. International Journal of Clinical and Experimental Pathology, 5(8), 726–738.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Okita, Y., & Nakayama, K. I. (2012). UPS delivers pluripotency. Cell Stem Cell, 11(6), 728–730.

    CAS  PubMed  Google Scholar 

  237. Szutorisz, H., Georgiou, A., Tora, L., & Dillon, N. (2006). The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells. Cell, 127(7), 1375–1388.

    CAS  PubMed  Google Scholar 

  238. Liao, B., & Jin, Y. (2010). Wwp2 mediates Oct4 ubiquitination and its own auto-ubiquitination in a dosage-dependent manner. Cell Research, 20(3), 332.

    CAS  PubMed  Google Scholar 

  239. Ramakrishna, S., Suresh, B., Lim, K.-H., Cha, B.-H., Lee, S.-H., Kim, K.-S., & Baek, K.-H. (2011). PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells and Development, 20(9), 1511–1519.

    CAS  PubMed  Google Scholar 

  240. Buckley, S. M., Aranda-Orgilles, B., Strikoudis, A., Apostolou, E., Loizou, E., Moran-Crusio, K., et al. (2012). Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell, 11(6), 783–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Lu, D., Davis, M. P. A., Abreu-Goodger, C., Wang, W., Campos, L. S., Siede, J., et al. (2012). MiR-25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse fibroblast cells to iPSCs. PLOS ONE, 7(8), e40938.

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Xu, H. M., Liao, B., Zhang, Q. J., Wang, B. B., Li, H., Zhong, X. M., et al. (2004). Wwp2, An E3 ubiquitin ligase that targets transcription factor Oct-4 for ubiquitination. Journal of Biological Chemistry, 279(22), 23495–23503.

    CAS  PubMed  Google Scholar 

  243. Welcker, M., Orian, A., Grim, J. A., Eisenman, R. N., & Clurman, B. E. (2004). A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Current Biology, 14(20), 1852–1857.

    CAS  PubMed  Google Scholar 

  244. Liu, N., Li, H., Li, S., Shen, M., Xiao, N., Chen, Y., et al. (2010). The Fbw7/human CDC4 tumor suppressor targets proproliferative factor KLF5 for ubiquitination and degradation through multiple phosphodegron motifs. Journal of Biological Chemistry, 285(24), 18858–18867.

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Hay, R. T. (2005). SUMO: A history of modification. Molecular Cell, 18(1), 1–12.

    CAS  PubMed  Google Scholar 

  246. Tahmasebi, S., Ghorbani, M., Savage, P., Gocevski, G., & Yang, X. J. (2014). The SUMO conjugating enzyme Ubc9 is required for inducing and maintaining stem cell pluripotency. Stem Cells, 32(4), 1012–1020.

    CAS  PubMed  Google Scholar 

  247. Liao, J., Marumoto, T., Yamaguchi, S., Okano, S., Takeda, N., Sakamoto, C., et al. (2013). Inhibition of PTEN tumor suppressor promotes the generation of induced pluripotent stem cells. Molecular Therapy, 21(6), 1242–1250.

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Yang, C. S., Chang, K. Y., & Rana, T. M. (2014). Genome-wide functional analysis reveals factors needed at the transition steps of induced reprogramming. Cell Reports, 8(2), 327–337.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the members of the Laboratory for Stem Cell Engineering and Regenerative Medicine (SCERM) for their excellent support. This work was supported by North Eastern Region – Biotechnology Programme Management Cell (NERBPMC), Department of Biotechnology, Government of India (BT/PR16655/NER/95/132/2015) and also by IIT Guwahati Institutional Top-Up on Start-Up Grant. The authors sincerely apologize to all scientists whose research could not be cited in this review due to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumar P. Thummer.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haridhasapavalan, K.K., Raina, K., Dey, C. et al. An Insight into Reprogramming Barriers to iPSC Generation. Stem Cell Rev and Rep 16, 56–81 (2020). https://doi.org/10.1007/s12015-019-09931-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09931-1

Keywords

Navigation