Skip to main content
Log in

Heat damage of cytoskeleton in erythrocytes increases membrane roughness and cell rigidity

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The intensity of erythrocyte membrane fluctuations was studied by laser interference microscopy (LIM), which provide information about mechanical properties of the erythrocyte membrane. Atomic force microscopy (AFM) was used to study erythrocyte surface relief; it is related to the cytoskeleton structure of erythrocyte membrane. Intact human erythrocytes and erythrocytes with a destroyed cytoskeleton were used. According to the obtained results, cytoskeleton damage induced by heating up to 50 °С results in a reduced intensity of cell membrane fluctuations compared to non-treated cells (20.6 ± 10.2 vs. 30.5 ± 5.5 nm, correspondingly), while the roughness of the membrane increases (4.5 ± 1.5 vs. 3.4 ± 0.5 nm, correspondingly).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Puckeridge, M., Chapman, B.E., Conigrave, A.D., Kuchel, P.W.: Membrane flickering of the human erythrocyte: physical and chemical effectors. Eur. Biophys. J. 43(4), 169–177 (2014). https://doi.org/10.1007/s00249-014-0952-2

    Article  Google Scholar 

  2. Brochard-Wyart, F., Lennon, J.F.: Frequency spectrum of flicker phenomenon in erythrocytes. J. Phys. (France) 36(11), 1035–1047 (1975). https://doi.org/10.1051/jphys:0197500360110103500

    Article  Google Scholar 

  3. Kononenko, V.L.: Flicker in erythrocytes. I. Theoretical models and registration techniques. Biochem. (Moscow) Suppl. A: Membr. Cell Biol. 3(4), 356–371 (2009). https://doi.org/10.1134/s1990747809040023

    Article  MathSciNet  Google Scholar 

  4. Strey, H., Peterson, M., Sackmann, E.: Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. Biophys. J. 69(2), 478–488 (1995). https://doi.org/10.1016/s0006-3495(95)79921-0

    Article  ADS  Google Scholar 

  5. Boss, D., Hoffmann, A., Rappaz, B., Depeursinge, C., Magistretti, P.J., Van de Ville, D., Marquet, P.: Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering. PLoS ONE 7(8), e40667 (2012). https://doi.org/10.1371/journal.pone.0040667

    Article  ADS  Google Scholar 

  6. Tuvia, S., Levin, S., Bitler, A., Korenstein, R.: Mechanical fluctuations of the membrane–skeleton are dependent on F-Actin ATPase in human erythrocytes. J. Cell Biol. 141(7), 1551–1561 (1998)

    Article  Google Scholar 

  7. Turlier, H., Fedosov, D.A., Audoly, B., Auth, T., Gov, N.S., Sykes, C., Joanny, J.F., Gompper, G., Betz, T.: Equilibrium physics breakdown reveals the active nature of red blood cell flickering. Nat. Phys. 12, 513 (2016). https://doi.org/10.1038/nphys3621

    Article  Google Scholar 

  8. Gov, N.S., Safran, S.A.: Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Biophys. J. 88(3), 1859–1874 (2005). https://doi.org/10.1529/biophysj.104.045328

    Article  Google Scholar 

  9. Park, Y., Best, C.A., Auth, T., Gov, N.S., Safran, S.A., Popescu, G., Suresh, S., Feld, M.S.: Metabolic remodeling of the human red blood cell membrane. Proc. Nat. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010). https://doi.org/10.1073/pnas.0910785107

    Article  ADS  Google Scholar 

  10. Kononenko, V.L.: Dielectro-deformations and flicker of erythrocytes: fundamental aspects of medical diagnostics applications. In: Saratov Fall Meeting 2001 2002, p. 10. SPIE

  11. Monzel, C., Sengupta, K.: Measuring shape fluctuations in biological membranes. J. Phys. D. Appl. Phys. 49(24), 243002 (2016)

    Article  ADS  Google Scholar 

  12. Popescu, G., Park, Y., Choi, W., Dasari, R.R., Feld, M.S., Badizadegan, K.: Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cells Mol. Dis. 41(1), 10–16 (2008). https://doi.org/10.1016/j.bcmd.2008.01.010s

    Article  Google Scholar 

  13. Rappaz, B., Barbul, A., Hoffmann, A., Boss, D., Korenstein, R., Depeursinge, C., Magistretti, P.J., Marquet, P.: Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy. Blood Cells Mol. Dis. 42(3), 228–232 (2009)

    Article  Google Scholar 

  14. Yusipovich, A.I., Parshina, E.Y., Brysgalova, N.Y., Brazhe, A.R., Brazhe, N.A., Lomakin, A.G., Levin, G.G., Maksimov, G.: V: Laser interference microscopy in erythrocyte study. J. Appl. Phys. 105(10), 102037 (2009). https://doi.org/10.1063/1.3116609

    Article  ADS  Google Scholar 

  15. Tychinsky, V.P., Tikhonov, A.N.: Interference microscopy in cell biophysics. 1. Principles and methodological aspects of coherent phase microscopy. Cell Biochem.Biophys. 58(3), 107–116 (2010)

    Article  Google Scholar 

  16. Parshina, E.Y., Yusipovich, A.I., Platonova, A.A., Grygorczyk, R., Maksimov, G.V., Orlov, S.N.: Thermal inactivation of volume-sensitive K+, ClGИТ cotransport and plasma membrane relief changes in human erythrocytes. Pflugers Arch. - Eur. J. Physiol. 465(7), 977–983 (2013)

    Article  Google Scholar 

  17. Girasole, M., Pompeo, G., Cricenti, A., Congiu-Castellano, A., Andreola, F., Serafino, A., Frazer, B.H., Boumis, G., Amiconi, G.: Roughness of the plasma membrane as an independent morphological parameter to study RBCs: a quantitative atomic force microscopy investigation. Biochim. Biophys. Acta Biomembr. 1768(5), 1268–1276 (2007). https://doi.org/10.1016/j.bbamem.2007.01.014

    Article  Google Scholar 

  18. Girasole, M., Pompeo, G., Cricenti, A., Longo, G., Boumis, G., Bellelli, A., Amiconi, S.: The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness. Nanomedicine 6(6), 760–768 (2010). https://doi.org/10.1016/j.nano.2010.06.004

    Article  Google Scholar 

  19. Ohta, Y., Otsuka, C., Okamoto, H.: Changes in surface roughness of erythrocytes due to shear stress: atomic force microscopic visualization of the surface microstructure. J. Artif. Organs 6(2), 101–105 (2003)

    Article  Google Scholar 

  20. Yamaikina, M.V., Mansurov, V.A., Ivashkevich, É.V.: Thermal destruction of erythrocyte spectrin: rheology, deformability, and stability with respect to detergents. J. Eng. Phys. Thermophys. 69(3), 283–286 (1996). https://doi.org/10.1007/bf02606946

    Article  Google Scholar 

  21. Dinarelli, S., Longo, G., Krumova, S., Todinova, S., Danailova, A., Taneva, S.G., Lenzi, E., Mussi, V., Girasole, M.: Insights into the morphological pattern of erythrocytes’ aging: coupling quantitative AFM data to microcalorimetry and Raman spectroscopy. J. Mol. Recognit. 31(11), e2732 (2018). https://doi.org/10.1002/jmr.2732

    Article  Google Scholar 

  22. Sharma, S., Zingde, S.M., Gokhale, S.M.: Identification of human erythrocyte cytosolic proteins associated with plasma membrane during thermal stress. J. Membr. Biol. 246(8), 591–607 (2013). https://doi.org/10.1007/s00232-013-9569-0

    Article  Google Scholar 

  23. Orlov, S.N., Kolosova, I.A., Cragoe, E.J., Gurlo, T.G., Mongin, A.A., Aksentsev, S.L., Konev, S.V.: Kinetics and peculiarities of thermal inactivation of volume-induced Na+/H+ exchange, Na+,K+,2Cl- cotransport and K+,Cl- cotransport in rat erythrocytes. Biochim. Biophys. Acta 1151(2), 186–192 (1993)

    Article  Google Scholar 

  24. Shnyrov, V.L., Orlov, S.N., Zhadan, G.G., Pokudin, N.I.: Thermal inactivation of membrane proteins, volume-dependent Na+, K(+)-cotransport, and protein kinase C activator-induced changes of the shape of human and rat erythrocytes. Biomed. Biochim. Acta 49(6), 445–453 (1990)

    Google Scholar 

  25. Marquet, P., Rappaz, B., Pavillon, N.: Quantitative phase-digital holographic microscopy: a new modality for live cell imaging. In: New Techniques in Digital Holography. pp. 169-217. John Wiley & Sons, Inc., (2015)

  26. Yusipovich, A.I., Cherkashin, A.A., Verdiyan, E.E., Sogomonyan, I.A., Maksimov, G.V.: Laser interference microscopy: a novel approach to the visualization of structural changes in myelin during the propagation of nerve impulses. Laser Phys. Lett. 13(8), 085601 (2016)

    Article  ADS  Google Scholar 

  27. Yusipovich, A.I., Novikov, S.M., Kazakova, T.A., Erokhova, L.A., Brazhe, N.A., Lazarev, G.L., Maksimov, G.V.: Peculiarities of studying an isolated neuron by the method of laser interference microscopy. Quantum Electron. 36(9), 874–878 (2006). https://doi.org/10.1070/QE2006v036n09ABEH013408

    Article  ADS  Google Scholar 

  28. Zhurina, M.V., Kostrikina, N.A., Parshina, E.Y., Strelkova, E.A., Yusipovich, A.I., Maksimov, G.V., Plakunov, V.K.: Visualization of the extracellular polymeric matrix of Chromobacterium violaceum biofilms by microscopic methods. Microbiology 82(4), 517–524 (2013). https://doi.org/10.1134/S0026261713040164

    Article  Google Scholar 

  29. Minaev, V.L., Yusipovich, A.I.: Use of an automated interference microscope in biological research. Meas. Tech. 55(7), 839–844 (2012)

    Article  Google Scholar 

  30. Shock, I., Girshovitz, P., Nevo, U., Shaked, N.T., Barbul, A., Korenstein, R.: Optical phase nanoscopy in red blood cells using low-coherence spectroscopy. In: 2012, p. 6. SPIE

  31. Goldberg, K.A., Bokor, J.: Fourier-transform method of phase-shift determination. Appl. Opt. 40(17), 2886–2894 (2001)

    Article  ADS  Google Scholar 

  32. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

    Article  Google Scholar 

  33. Moll, W., Voss, H.: The diffusion coefficient of haemoglobin. Respir. Physiol. 1(4), 357–365 (1966). https://doi.org/10.1016/0034-5687(66)90002-8

    Article  Google Scholar 

  34. Barer, R., Joseph, S.: Refractometry of living cells. Part I. Basic principles. Q. J. Microsc. Sci. 95(4), 399–423 (1954)

  35. Jackson, W.M., Kostyla, J., Nordin, J.H., Brandts, J.F.: Calorimetric study of protein transitions in human erythrocyte ghosts. Biochemistry 12(19), 3662–3667 (1973)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Russian Foundation for Basic Research (grant #17-00-00407)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu Parshina.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parshina, E.Y., Yusipovich, A.I., Brazhe, A.R. et al. Heat damage of cytoskeleton in erythrocytes increases membrane roughness and cell rigidity. J Biol Phys 45, 367–377 (2019). https://doi.org/10.1007/s10867-019-09533-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-019-09533-5

Keywords

Navigation