Skip to main content
Log in

Revealing the bacterial community profiles during the degradation of acetone, propionic and hexanoic acids-components of wastewater from the Fischer-Tropsch process

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

The Fischer-Tropsch (F-T) process for production of fuels is entrenched in several countries’ approach to meeting energy demands. However, the clean water deficit associated with the down-stream processes has made it necessary to explore bioremediation methods to ameliorate the consequences of its use. In this study, a consortium of bacteria was utilized for determination of biodegradation and removal rates, based on reduction in chemical oxygen demand of a mixture of acetone, propionic acid and hexanoic acid (APH) (all components of F-T wastewater), at an organic loading of 5 and 9.53 g CODL−1. The individual degradation efficiencies of the F-T components were determined using a gas chromatograph. Further, the bacterial consortia responsible for the degradation of the mixture of APH were determined using metagenomics data derived from next-generation sequencing. The overall chemical oxygen demand removal was found to be 88.8% and 82.3% at organic loading of 5 and 9.53 g CODL−1, respectively. The optimal degradation efficiency of acetone, propionic acid and hexanoic acid over a period of 10 days was found to be 100%, 85% and 75.8%, respectively. The primary microbial communities presumed to be responsible for APH degradation by phyla classification across all samples were found to be Proteobacteria (55–92%), Actinobacteria (5–33%) and Firmicutes (0.08–9%). Overall, the study has demonstrated the importance of aerobic consortia interactions in the degradation of components of the F-T wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) Application of microorganisms in bioremediation-review. Jour Environ Microbio 1:1

    Google Scholar 

  • Abba SI, Elkiran G (2017) Effluent prediction of chemical oxygen demand from the wastewater treatment plant using artificial neural network application. Procedia Com Sci 120:156–163

    Article  Google Scholar 

  • Ahad N (2016) Removal of carboxylic acids from Fischer-Tropsch aqueous product. University of Alberta, Dissertation

    Google Scholar 

  • Alalayah W (2017) Biodegradation of wastewater treatment containing petroleum hydrocarbon using rotating biological contractor (RBC). Intern Jour Adv Engin Res Dev 4:58–65

    Google Scholar 

  • Aljuboury DA, Palaniandy P, Abdul Aziz HB, Feroz S (2017) Treatment of petroleum wastewater by conventional and new technologies-A review. Global Nest Jour 19:439–452

    Article  CAS  Google Scholar 

  • Ambani A, Annegarn H (2015) A reduction in mining and industrial effluents in the Blesbokspruit Ramsar wetland, South Africa: Has the quality of the surface water in the wetland improved? Water SA 41:648–659

    Article  CAS  Google Scholar 

  • Baltrėnas P, Zagorskis A, Misevičius A (2015) Research into acetone removal from air by biofiltration using a biofilter with straight structure plates. Biotechnol Biotechnol Equip 29:404–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barba M, Czosnek H, Hadidi A (2014) Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6:106–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Behnami A, Farajzadeh D, Isazadeh S, Benis KZ, Shakerkhatibi M, Shiri Z, Ghorghanlu S, Yadeghari A (2018) Diversity of bacteria in a full-scale petrochemical wastewater treatment plant experiencing stable hydrocarbon removal. Jour of Water Process Engineering 23:285–291

    Article  Google Scholar 

  • Bourque D, Bisaillon JG, Beaudet R, Sylvestre M, Ishaque M, Morin A (1987) Microbiological degradation of malodorous substances of swine waste under aerobic conditions. Appl Environ Microbiol 53:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bragg L, Tyson GW (2014) Metagenomics using next-generation sequencing. Environ Microbiol 1096:183–201

    Article  CAS  Google Scholar 

  • Bushell FM, Tonner PL, Jabbari S, Schmid AK, Lund PA (2018) Synergistic impacts of organic acids and pH on growth of Pseudomonas aeruginosa: a comparison of parametric and Bayesian non-parametric methods to model growth. Front Microbiol 9:3196

    Article  PubMed  Google Scholar 

  • Cebeci MS, Senturk I, Guvenin U (2016) Investigation of aerobic degradation of industrial wastewater containing high organic matter: kinetic study. Eur Sci J 12:121–132

    Google Scholar 

  • Chen G, Huang J, Tian X, Chu Q, Zhao Y, Zhao H (2018) Effects of influent loads on performance and microbial community dynamics of aerobic granular sludge treating piggery wastewater. J Chem Technol Biotechnol 93:1443–1452

    Article  CAS  Google Scholar 

  • Chin S, Ismael NS, Abdullar AA, Yahya ARM (2010) Aerobic degradation of volatile fatty acids by bacterial strain isolated from rivers and cow farm in Malaysia. Jour of Biodegradation 1:100–111

    Google Scholar 

  • Coelho LM, Rezende HC, Coelho LM, de Sousa PA, Melo DF, Coelho NM (2015) Bioremediation of polluted waters using microorganisms. Adv in Bioremediation of Wastewater and Polluted Soil 10:60770

    Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2008) The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cydzik-Kwiatkowska A, Zielińska M (2016) Bacterial communities in full-scale wastewater treatment systems. World J Microbiol Biotechnol 32:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13

    Google Scholar 

  • De Maayer P, Valverde A, Cowan DA (2014) The current state of metagenomic analysis. In: Poptsova MS (ed) Genome Analysis: Current Procedures and Applications. Caister Academic Press, New York, pp 183–220

    Google Scholar 

  • Durai G, Rajasimman M, Rajamohan N (2011) Kinetic studies on biodegradation of tannery wastewater in a sequential batch bioreactor. Jour Biot Res 3:19

    CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettema TJ, Andersson SG (2009) The α-proteobacteria: the Darwin finches of the bacterial world. Biol Lett 5:429–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritsche W, Hofrichter M (2005) Aerobic degradation of recalcitrant organic compounds by microorganisms. In: Jördening H, Josef Winter J (eds) Environmental biotechnology concepts and applications. Wiley, Germany, pp 203–205

    Chapter  Google Scholar 

  • Gaunt P, Hester KW (1989) A kinetic model for volatile fatty acid biodegradation during aerobic treatment of piggery wastes. Biotechnol Bioeng 34:126–130

    Article  Google Scholar 

  • Hanajima D, Haruta S, Hori T, Ishii M, Haga K, Igarashi Y (2009) Bacterial community dynamics during reduction of odorous compounds in aerated pig manure slurry. J Appl Microbiol 106:118–129

    Article  CAS  PubMed  Google Scholar 

  • Hung YT, Hawumba JF, Wang LK (2014) Living machines for bioremediation, wastewater treatment, and water conservation. In: Wang L, Yang C (eds) Modern water resources engineering. Humana Press, New Jersey, pp 681–713

    Chapter  Google Scholar 

  • Jan B, Beilen V, Neuenschwunder M, Suits TH, Roth C, Balada SB, Witholt B (2003) Rubredoxins involved in alkane degradation. J Bacteriol 184:1722–1732

    Google Scholar 

  • Jimenez-Diaz L, Caballero A, Segura A (2017) Pathways for the degradation of fatty acids in bacteria. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids. Handbook of hydrocarbon and lipid microbiology. Springer, Switzerland, pp 1–23

    Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: Involved microorganisms and genetically engineered microorganisms. In: Chamy R, Rosenkranz F (eds) Biodegradation-life of science. InTech, Croatia, pp 289–320

    Google Scholar 

  • Jünemann S, Kleinbölting N, Jaenicke S, Henke C, Hassa J, Nelkner J, Stolze Y, Albaum SP, Schlüter A, Goesmann A, Sczyrba A (2017) Bioinformatics for NGS-based metagenomics and the application to biogas research. J Biotechnol 261:10–23

    Article  PubMed  CAS  Google Scholar 

  • Juretschko S, Loy A, Lehner A, Wagner M (2002) The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol 25:84–99

    Article  CAS  PubMed  Google Scholar 

  • Kirby S, Dennis A, Kahler A (2009) Aeration to degas CO2, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage. Appl Geochem 24:1175–1184

    Article  CAS  Google Scholar 

  • Kumar S, Babu BV (2008) Separation of carboxylic acids from wastewater via reactive extraction. In: Proceedings of International Convention on Water Resources Development and Management (ICWRDM). Pilani, India

  • Leung K, Topp E (2001) Bacterial community dynamics in liquid swine manure during storage: molecular analysis using DGGE/PCR of 16S rDNA. FEMS Microbiol Ecol 38:169–177

    Article  CAS  Google Scholar 

  • Liu JF, Mbadinga S, Yang SZ, Gu JD, Mu BZ (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16:4814–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X (2012) Fischer-Tropsch synthesis: Towards understanding. University of the Witwatersrand, Dissertation

    Google Scholar 

  • Lukins HB, Foster JW (1963) Methyl ketone metabolism in hydrocarbon-utilizing mycobacteria. J Bacteriol 85:1074–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majone M, Aulenta F, Dionisi D, D'Addario EN, Sbardellati R, Bolzonella D, Beccari M (2010) High-rate anaerobic treatment of Fischer–Tropsch wastewater in a packed-bed biofilm reactor. Water Res 44:2745–2752

    Article  CAS  PubMed  Google Scholar 

  • Mittal A (2011) Biological wastewater treatment. Water Today 1:32–44

    Google Scholar 

  • Mkhize NT, Msagati TA, Mamba BB, Momba M (2014) Determination of volatile fatty acids in wastewater by solvent extraction and gas chromatography. Phys and Chem of the Earth, Parts A/B/C 67:86–92

    Article  Google Scholar 

  • Muga HE, Mihelcic RJ (2007) Sustainability of wastewater treatment technologies. J Environ Manag 88:437–447

    Article  CAS  Google Scholar 

  • Neethu CS, Saravanakumar C, Purvaja R, Robin RS, Ramesh R (2019) Oil-spill triggered shift in indigenous microbial structure and functional dynamics in different marine environmental matrices. Sci Rep 9:1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Njalam’mano JBJ, Chirwa EMN (2018) Isolation, identification and characterization of butyric acid degrading bacterium from pit latrine faecal sludge. Chem Eng Trans 64:445–450

    Google Scholar 

  • Oosterkamp MJ, Boeren S, Atashgahi S, Plugge CM, Schaap PJ, Stams AJ (2015) Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC. FEMS Microbiol Lett 362:80

    Article  CAS  Google Scholar 

  • Patil SS, Kumar MS, Ball AS (2010) Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater. Appl Microbiol Biotechnol 87:353–363

    Article  CAS  PubMed  Google Scholar 

  • Penner GB (2014) Mechanisms of volatile fatty acid absorption and metabolism and maintenance of a stable rumen environment. In: 25th Florida Ruminant Nutrition Symposium, vol 4, pp 92–104

    Google Scholar 

  • Peu P, Béline F, Martinez J (2004) Volatile fatty acids analysis from pig slurry using high-performance liquid chromatography. Int J Environ Anal Chem 84:1017–1022

    Article  CAS  Google Scholar 

  • Platen H, Schink B (1989) Anaerobic degradation of acetone and higher ketones via carboxylation by newly isolated denitrifying bacteria. Microbiology 135:883–891

    Article  CAS  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raju MN, Scalvenzi L (2017) Petroleum degradation: Promising biotechnological tools for bioremediation. Recent Insights in Petroleum Science and Engineering IntechOpen, In

    Google Scholar 

  • Raza K, Ahmed H (2017) Recent advancement in next generation sequencing techniques and its computational analysis. Int J Bioinforma Res Appl 13:1–14

    Google Scholar 

  • Riffat R (2013) Fundamentals of wastewater treatment and engineering. CRC Press, London

    Google Scholar 

  • Rosa R (2017) The role of synthetic fuels for a carbon neutral economy. Jour of Carbon Res 3:11

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen T, Pi Y, Bao M, Xu N, Li Y, Lu J (2015) Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia. Environ Sci: Processes & Impacts 17:2022–2033

    CAS  Google Scholar 

  • Shin SH, Lee C, Hwang K, Hwang S (2010) Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge. Bioresour Technol 101:9461–9470

    Article  CAS  PubMed  Google Scholar 

  • Shokrollahzadeh S, Azizmohseni F, Golmohammad F, Shokouhi H, Khademhaghighat F (2008) Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran. Bio Res Tech 99:6127–6133

    Article  CAS  Google Scholar 

  • Silva CC, Jesus EC, Torres AP, Sousa MP, Santiago VM, Oliveira VM (2010) Investigation of bacterial diversity in membrane bioreactor and conventional activated sludge processes from petroleum refineries using phylogenetic and statistical approaches. J Microbiol Biotechnol 20:447–459

    Article  CAS  PubMed  Google Scholar 

  • South Africa Department of Water Affairs (2013) Revision of general authorisations in terms of section 39 of the national water act, 1998 (ACT NO. 36 OF 1998) https://cer.org.za/wp-content/uploads/2014/02/Revision-of-General-Authorisations-2013.pdf. Accessed 15 July 2019

  • Swabey KGA (2004) Evaluation of fluidised-bed reactors for the biological treatment of synthol reaction water, a high-strength COD petrochemical effluent. North-West University, Dissertation

    Google Scholar 

  • Takeshita T, Yamaji K (2008) Important roles of Fischer–Tropsch synfuels in the global energy future. Energy Policy 36:2773–2784

    Article  Google Scholar 

  • Tekere M, Lötter A, Olivier J, Venter S (2015) Bacterial diversity in some South African Thermal Springs: a metagenomic analysis. In: Proceedings world geothermal congress 2015. Melbourne, Australia, pp 19–25

    Google Scholar 

  • Vaidya S, Devpura N, Jain K, Madamwar D (2018) Degradation of chrysene by enriched bacterial consortium. Front Microbiol 9:1333

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Zyl PJ (2008) Anaerobic digestion of Fischer-Tropsch reaction water: submerged membrane anaerobic reactor design, performance evaluation & modelling. University of Cape Town, Dissertation

    Google Scholar 

  • Verma I (2018) Metagenomics in the era of Next Generation Sequencing. http://www.sciwri.club/archives/7530.

  • Volkering F, Breure AM, Sterkenburg A, van Andel JV (1992) Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl Microbiol Biotechnol 36:548–552

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Hu M, Xia Y, Wen X, Ding K (2012) Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol 1617

  • Wasewar KL (2005) Separation of lacticacid: recent advances. Chem Biochem Eng Q 19:159–172

    CAS  Google Scholar 

  • Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H (2018) Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol 9:2885

    Article  PubMed  PubMed Central  Google Scholar 

  • Zacharof MP, Lovitt RW (2013) Complex effluent streams as a potential source of volatile fatty acids. Waste and Biomass Valorization 4:557–581

    Article  CAS  Google Scholar 

  • Zhu J, Riskowski GL, Torremorell M (1999) Volatile fatty acids as odor indicators in swine manure—acritical review. Trans of the ASAE 42:175

    Article  CAS  Google Scholar 

Download references

Funding

IDEAS (UNISA), Department of Science and technology (DST) in partnership with Tata Motors Africa (Student bursary), DST–Bioremediation Research Consortium grant number DST/CON 019/2017 and South Africa Synthetic Oil Liquid (SASOL) Technology University Collaboration provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace N Ijoma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malematja, T.P., Ijoma, G.N., Selvarajan, R. et al. Revealing the bacterial community profiles during the degradation of acetone, propionic and hexanoic acids-components of wastewater from the Fischer-Tropsch process. Int Microbiol 23, 313–324 (2020). https://doi.org/10.1007/s10123-019-00106-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-019-00106-z

Keywords

Navigation