Skip to main content

Advertisement

Log in

Maackia amurensis agglutinin induces apoptosis in cultured drug resistant human non-small cell lung cancer cells

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The emergence of multi drug resistance in non-small cell lung cancer (NSCLC) patients is a major challenge towards the efficacy of chemotherapy. Thus, there is an urgent need for the newer, better clinically targeted strategies to treat this disease. Earlier studies from our laboratory revealed the apoptotic activity of Maackia amurensis agglutinin (MAA) in human NSCLC cells. In this study, the effect of MAA on drug resistant NSCLC cells was investigated. Two Paclitaxel-resistant NSCLC sub-lines (A549/PTX100 and NCI-H460/PTX100) were developed from A549 & NCI-H460 cell lines respectively. The generation of drug resistance phenotype was confirmed by the expression of cell surface MDR-1. Both the drug resistant sub-lines showed distinct morphological alterations. MAA interacted with the cell-surface protein(s) of apparent Mr ~66 kDa and induced apoptosis in both the sub-lines through intrinsic/mitochondrial pathway, involving reduction in mitochondrial trans-membrane potential, up-regulation of Bax, unaltered/decreased expression of Bcl-XL, release of mitochondrial cytochrome c into the cytosol and activation of pro-caspases (−9&-3). Our findings highlighted the potential of this plant agglutinin to serve as an apoptosis inducing agent in drug resistant NSCLC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Didkowska, J., Wojciechowska, U., Manczuk, M., Lobaszewski, J.: Lung Cancer epidemiology : contemporary and future challenges worldwide. Ann Transl Med. 4, 15–161 (2016)

    Google Scholar 

  2. American Cancer Society (2017) Cancer Facts and Figures

  3. Joshi, M., Liu, X., Belani, C.P.: Taxanes, past, present and future impact on non-small cell lung cancer. Anti-Cancer Drugs. 25, 571–583 (2014)

    CAS  PubMed  Google Scholar 

  4. Szakacs, G., Paterson, J.K., Ludwig, J.A., Booth-Genthe, C., Gottesman, M.M.: Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5, 219–234 (2006)

    CAS  PubMed  Google Scholar 

  5. Eid, S.Y., El-Readi, M.Z., Fatani, S.H., Eldin, E.E.M.N., Wink, M.: Natural products modulate the multifactorial multidrug resistance of cancer. Pharmacol. Pharm. 6, 146–176 (2015)

    CAS  Google Scholar 

  6. Shanker, M., Willcutts, D., Roth, J.A., Ramesh, R.: Drug resistance in lung cancer. Lung Cancer Target. Ther. 1, 23–36 (2010)

    CAS  Google Scholar 

  7. Zahreddine, H., Borden, K.L.B.: Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 4, 1–8 (2013)

    CAS  Google Scholar 

  8. Yakymovych, M.Y., Yakymovych, I.A., Chekhun, V.F., Stoika, R.S.: Different production of TGF-β1 by cisplatin-sensitive and resistance L1210 cells treated with anticancer drug and lectins. Exp. Oncol. 23, 204–208 (2001)

    CAS  Google Scholar 

  9. Valentiner, U., Pfuller, U., Baum, C., Schumacher, U.: The cytotoxic effect of mistletoe lectins I, II and III on sensitive and multidrug resistant human colon cancer cell lines in vitro. Toxicology. 17, 187–199 (2002)

    Google Scholar 

  10. Beztsinna, N., de Matos, M.B.C., Walther, J., Heyder, C., Hildebrandt, E., Leneweit, G., Mastrobattista, E., andKok, R.J.: Analysis of receptormediated uptake and pro-apoptotic activity of mistletoe lectin-1 by high content imaging. Sci. Rep. 8, 2768 (2018). https://doi.org/10.1038/s41598-018-20915-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, K., Yang, X., Wu, L., Yu, M., L, X., Li, N., Wang, S., Li, G.: Pinelliapedatisecta agglutinin targets drug resistant K562/ADR leukemia cells through binding with sarcolemmal membrane associated protein and enhancing macrophage phagocytosis. PLoS One. 8(9), e74363 (2013). https://doi.org/10.1371/journal.pone.0074363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fedoreev, S.A., Kulish, N.I., Glebko, L.I., Pokushalova, T.V., Veselova, M.V., Saratikov, A.S., Vengerovskii, A.I., Chuchalin, V.S.: Maksar: A preparation based on Amur Maackia. Pharmaceutical Chem. J. 38, 1–7 (2004)

    Google Scholar 

  13. Kawaguchi, T., Matsumoto, I., Osawa, T.: Studies on hemagglutinins from Maackia amurensis seeds. J. Biol. Chem. 10, 2786–2792 (1974)

    Google Scholar 

  14. Wang, W.-C., Cummings, R.D.: As assay for leukoagglutinating lectins using suspension cultured mouse lymphoma cells (BW5147) stained with neutral red. Anal. Biochem. 161, 80–84 (1987)

    CAS  PubMed  Google Scholar 

  15. Ohyama, C., Hosono, M., Nitta, K., Oh-eda, M., Yoshikawa, K., Habuchi, T., Arai, Y., Fukuda, M.: Carbohydrate structure and differential binding of prostrate specific antigen to Maackia amurensis lectin between prostrate cancer and benign prostrate hypertrophy. Glycobiology. 14, 671–679 (2004)

    CAS  PubMed  Google Scholar 

  16. Tang, W., Guo, Q., Mayumi, U., Norihiko, K., Yasuji, S., Masami, M., Yasuhiko, S., Munehiro, N., Naoya, K., Masatoshi, M.: Histochemical expression of sialoglycoconjugates in carcinoma of the papilla of vater. Hepatogastroenterology. 52, 67–71 (2004)

    Google Scholar 

  17. Babal, P., Janega, P., Cerna, A., Kholova, I.: Neoplastic transformation of the thyroid gland is accompanied by changes in cellular sialylation. Acta Histochemica. 108, 133–140 (2006)

    CAS  PubMed  Google Scholar 

  18. Inagaki, Y., Tang, W., Guo, Q., Kokudo, N., Sugawara, Y., Karako, H., Konishi, T., Nakata, M., Nagawa, H., Makuuchi, M.: Sialoglycoconjugate expression in primary colorectal and metastatic lymph node tissues. Hepatogastroenterology. 54, 53–57 (2007)

    PubMed  Google Scholar 

  19. Inagaki, Y., Usuda, M., Xu, H., Wang, F., Cui, S., Mafune, K.-L., Sugawara, Y., Kokudo, N., Tang, W., Nakata, M.: Apperance of high molecular weight sialoglycoproteins recognized by Maackia amurensis leukoagglutinin in gastic cancer tissues.: a case report using 2-DE -lectin binding analysis. Biosci. Trends. 2, 151–154 (2008)

    PubMed  Google Scholar 

  20. Peracaula, R., Barrabes, S., Sarrats, A., Rudd, P.M., de Llorens, R.: Altered glycosylation in tumours focused to cancer diagnosis. Dis. Markers. 25, 207–218 (2008)

    CAS  PubMed  Google Scholar 

  21. Fukasawa, T., Asao, T., Yamauchi, H., Ide, M., Tabe, Y., Fujii, T., Yamaguchi, S., Tsutsumi, S., Yazawa, S., Kuwano, H.: Associated expression of α2,3 sialylated type 2 chain structures with lymph node metastasis in distal colorectal cancer. Surg. Today. 43, 155–162 (2013)

    CAS  PubMed  Google Scholar 

  22. Ochoa-Alvarez, J.A., Krishnan, H., Shen, Y., Acharya, N.K., Han, M., McNulty, D.E., Hasegawa, H., Hyodo, T., Senga, T., Geng, J.G., Kosciuk, M., Shin, S.S., Goydos, J.S., Temiakov, D., Nagele, R.G., Goldberg, G.S.: Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration. PloS One. 7, e41845 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kapoor, S., Marwaha, R., Majumdar, S., Ghosh, S.: Apoptosis induction by Maackia amurensis agglutinin in childhood acute lymphoblastic leukemic cells. Leuk. Res. 3, 559–567 (2008)

    Google Scholar 

  24. Mehta, S., Chhetra, R., Srinivasan, R., Sharma, S.C., Behera, D., Ghosh, S.: Potential importance of Maackia amurensis agglutinin in non-small cell lung cancer. Biol. Chem. 394, 889–900 (2013)

    CAS  PubMed  Google Scholar 

  25. Lalli, R.C., Kaur, K., Dadsena, S., Chakraborti, A., Srinivasan, R., Ghosh, S.: Maackiaamurensis agglutinin enhances paclitaxel induced cytotoxicity in cultured non-small cell lung cancer cells. Biochimie. 115, 93–107 (2015)

    Google Scholar 

  26. Yabuki, N., Sakata, K., Yamasaki, T., Terashima, H., Mio, T., Miyazaki, Y., Fujii, T., Kitada, K.: Gene amplification and expression in lung cancer cells with acquired paclitaxel resistance. Cancer Genet. Cytogenet. 173, 1–9 (2007)

    CAS  PubMed  Google Scholar 

  27. Bui, K.C., Buckley, S., Wu, F., Uhal, B., Joshi, I., Liu, J., Hussain, M., Makhoul, I., Warburton, D.: Induction of A-and D type cyclins and cdc2 kinase activity during recovery from short-term hyperoxic lung injury. Am. J. Phys. 268, L625–L635 (1995)

    CAS  Google Scholar 

  28. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C.: Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985)

    CAS  PubMed  Google Scholar 

  29. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685 (1970)

    CAS  PubMed  Google Scholar 

  30. Towbin, H., Staehelin, T. and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl.Acad.Sci. U S A., 76, 4350–4354

    CAS  Google Scholar 

  31. Bui, K.C., Buckley, S., Wu, F., Uhal, B., Joshi, I., Liu, J., Hussain, M., Makhoul, I., Warburton, D.: Induction of A-and D type cyclins and cdc2 kinase activity during recovery from short-term hyperoxic lung injury. Am.J.Physiol. 268, L625–L635 (1985)

    Google Scholar 

  32. Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F., Riccardi, C.: A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods. 139, 271–279 (1991)

    CAS  PubMed  Google Scholar 

  33. Fabbri, F., Carloni, S., Brigliadori, G., Zoli, W., Lapalombella, R., andMarini, M.: Sequential events of apoptosis involving docetaxel, a microtubule-interfering agent: a cytometric study. BMC Cell Biol. 7, 1–14 (2006)

    Google Scholar 

  34. Chomczynski, P., Sacchi, N.: Single-step method of RNA isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987)

    CAS  PubMed  Google Scholar 

  35. Livak, K.J., Schmittgen, T.D.: Analysis of a relative gene expression data using real- time quantitative PCR and the 2-ΔΔC T method. Methods. 25, 402–408 (2001)

    CAS  PubMed  Google Scholar 

  36. Kim, W.H., Park, W.B., Gao, B., Jung, M.H.: Critical role of reactive oxygenspecies and mitochondrialmembrane potential in Korean mistletoe lectin-induced apoptosis in human hepatocarcinoma cells. Mol. Pharmacol. 66, 1383–1396 (2004)

    CAS  PubMed  Google Scholar 

  37. Wang, J., Seebacher, N., Shi, H., Kan, Q., Duan, Z.: Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget. 8(48), 84559–84571 (2017)

    PubMed  PubMed Central  Google Scholar 

  38. Sun, Q.L., Sha, H.F., Yang, X.H., Bao, G.L., Lu, J., Xie, Y.Y.: Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol. J. Cancer Res. Clin. Oncol. 137, 521–532 (2011)

    CAS  PubMed  Google Scholar 

  39. Uhrik, B., El-Saggan, A.H., Seres, M., Gibalova,L., Breier, A., Sulova, Z. (2006) Structural differences between sensitive and resistant L1210 cells, Gen. Physiol. Biophys. 25427–25438

  40. Zhao, R., Qin, W., Qin, R., Han, J., Li, C., Wang, Y., Xu, C.: Lectin array andglycogene expression analyses of ovarian cancer cell line A2780 and its cisplatin-resistant derivate cell line A2780-cp. Clin. Proteomics. 14, 20 (2017). https://doi.org/10.1186/s12014-017-9155-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu, X., Christian, P., Sipes, I.G., Hoyer, P.B.: Expression and redistribution of cellular Bad, Bax, and Bcl-X protein is asssociatd with VCD induced ovotoxicity in rats. 65, 1489-1495 (2001).

  42. Asmarinah, A., Paradowska-Dogan, A., Kodariah, R., Tanuhardja, B., Waliszewski, P., Mochtar, C.A., Budiningsih, Y., Weidner, W., Hinsch, E.: Expression of the Bcl-2 family genes and complexes involved in the mitochondrial transport in prostate cancer cells. Int. J. Oncol. 45, 1489–1496 (2014)

    CAS  PubMed  Google Scholar 

  43. Arumugam, J., Jeddy, N., Ramamurthy, A., Thangavelu, R.: The expression of Bcl-2 in oral squamous cell carcinoma. J. Orofac. Sci. 9, 71–74 (2017)

    CAS  Google Scholar 

  44. Lyu, S.Y., Choi, S.H., Park, W.B.: Korean mistletoe lectin-induced apoptosis in hepatocarcinoma cells is associated with inhibition of telomerase via mitochondrial controlled pathway independent of p53. Arch. Pharm. Res. 25, 93–101 (2002)

    CAS  PubMed  Google Scholar 

  45. Hassaan, M., Watari, H., Almaaty, A.A., Ohba, Y., Sakuragi, N.: Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 1–23 (2014)

    Google Scholar 

  46. Kong, C.Z., Zhang, Z.: Bcl-2 overexpression inhibits generation of intracellular reactive oxygen species and blocks adriamycin-induced apoptosis in bladder cancer cells. Asian Pac. J. Cancer Prev. 14, 895–901 (2013)

    PubMed  Google Scholar 

  47. Peng, Y., Wang, L., Qing, Y., Li, C., Ren, T., Li, Q., Li, M., Zhang, S., Shan, J., Wang, G., Yang, Z., Wang, D.: Polymorphisms of Bcl-2 and Bax genes associate with outcomes in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Sci. Rep. 5, 17766 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tzifi, F., Economopoulou, C., Gourgiotis, D., Ardavanis, A., Papageorgiou, S., Scorilas, A.: The role of Bcl-2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv. Hematol. 2012, 1–15 (2012)

    Google Scholar 

  49. deGraaff, M.A., de Rooij, M.A., van den Akker, B.E., Gelderblom, H., Chibon, F., Coindre, J.M., Marino-Enriquez, A., Fletcher, J.A., Cleton-Jansen, A.M., Bovee, J.V.: Inhibition of Bcl-2 family members sensitises soft tissue leiomyosarcomas to chemotherapy. Br. J. Cancer. 114, 1219–1226 (2016)

    CAS  Google Scholar 

  50. Rao, P.V., Jayaraj, R., Bhaskar, A.S., Kumar, O., Bhattacharya, R., Saxena, P., Dash, P.K., Vijayaraghavan, R.: Mechanism of ricin-induced apoptosis in human cervical cancer cells. Biochem. Pharmacol. 69, 855–865 (2005)

    CAS  PubMed  Google Scholar 

  51. Singh, R., Nawale, L., Sarkar, D., Suresh, C.G.: Two chitotriose-specific lectins show anti-angiogenesis, induces caspase-9-mediated apoptosis and early arrest of pancreatic tumor cell cycle. PLoS One. 11(1), e0146110 (2016). https://doi.org/10.1371/journal.pone.0146110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tatsuta, T., Hosono, M., Takahashi, K., Omoto, T., Kariya, Y., Sugawara, S., Hakomori, S., Nitta, K.: Sialic acid-binding lectin (leczyme) induces apoptosis to malignant mesothelioma and exerts synergistic antitumor effects with TRAIL. Int. J. Oncol. 44, 377–384 (2014)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant obtained from Indian Council of Medical Research (New Delhi, India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhetra Lalli, R., Kaur, K., Chakraborti, A. et al. Maackia amurensis agglutinin induces apoptosis in cultured drug resistant human non-small cell lung cancer cells. Glycoconj J 36, 473–485 (2019). https://doi.org/10.1007/s10719-019-09891-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09891-1

Keywords

Navigation