Skip to main content
Log in

Recent progress on the molecular breeding of Cucumis sativus L. in China

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Molecular breeding of Cucumis sativus L. is based on traditional breeding techniques and modern biological breeding in China. There are opportunities for further breeding improvement by molecular design breeding and the automation of phenotyping technology using untapped sources of genetic diversity.

Abstract

Cucumber (Cucumis sativus L.) is an important vegetable cultivated worldwide. It bears fruits of light fragrance, and crisp texture with high nutrition. China is the largest producer and consumer of cucumber, accounting for 70% of the world’s total production. With increasing consumption demand, the production of Cucurbitaceae crops has been increasing yearly. Thus, new cultivars that can produce high-quality cucumber with high yield and easy cultivation are in need. Conventional genetic breeding has played an essential role in cucumber cultivar innovation over the past decades. However, its progress is slow due to the long breeding period, and difficulty in selecting stable genetic characters or genotypes, prompting researchers to apply molecular biotechnologies in cucumber breeding. Here, we first summarize the achievements of conventional cucumber breeding such as crossing and mutagenesis, and then focus on the current status of molecular breeding of cucumber in China, including the progress and achievements on cucumber genomics, molecular mechanism underlying important agronomic traits, and also on the creation of high-quality multi-resistant germplasm resources, new variety breeding and ecological breeding. Future development trends and prospects of cucumber molecular breeding in China are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blázquez MA, Soowal LN, Lee L, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    PubMed  Google Scholar 

  • Bradbury LMT, Fitzgerald TL, Henry RJ, Jin Q, Waters DLE (2005) The gene for fragrance in rice. Plant Biotechnol J 3:363–370

    CAS  PubMed  Google Scholar 

  • Bu F, Chen H, Shi Q, Zhou Q, Gao D (2016) A major quantitative trait locus conferring subgynoecy in cucumber. Theor Appl Genet 129:97–104

    CAS  PubMed  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Che G, Zhang X (2019) Molecular basis of cucumber fruit domestication. Curr Opin Plant Biol 47:38–46

    CAS  PubMed  Google Scholar 

  • Chen C (2015) Screening and identification of cucumber “406” mutant by EMS mutagenesis (dissertation). Hunan Agricultural University, Changsha (in Chinese with English abstract)

    Google Scholar 

  • Chen QJ, Zhang HY, Wang YJ, Li WY, Zhang F, Mao AJ, Chen JH et al (2010) Mapping and analyzing QTLs of yield-associated agronomic traits of greenhouse cucumbers. Sci Agric Sin 43:112–122 (in Chinese with English abstract)

    Google Scholar 

  • Chen LZ, Chen JF, Jack S, Qian CT (2005) A new pickling cucumber F1 hybrid bred from inter specific hybridization. China Veg (3):4–6 (in Chinese with English abstract)

  • Cui XH, Liu N, Han YK, Wei AM, Zhang GH, Du SL (2012) Mutation and inheritance of nitrogen ion injection induce mutant in cucumber. China Cucurbits Veg 25:17–19 (in Chinese with English abstract)

    Google Scholar 

  • Ding L, Yan S, Jiang L, Liu M, Zhang J, Zhao J, Zhao W, Han Y, Wang Q, Zhang X (2015) HANABA TARANU regulates the shoot apical meristem and leaf development in cucumber (Cucumis sativus L.). J Exp Bot 66:7075–7087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong S (2013) Genetic mechanism and gene mapping of glossy fruit skin in cucumber (dissertation). Chinese Academy of Agricultural Sciences, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Fazio G, Chung SM, Staub JE (2003) Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theor Appl Genet 107:875–883

    CAS  PubMed  Google Scholar 

  • Gao M, Hu L, Li Y, Weng Y (2016) The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. Theor Appl Genet 129:1961–1973

    CAS  PubMed  Google Scholar 

  • Gu X, Zhang S, Zhang S (2006) The AFLP makers linkedwith the bitter fruit gene (Bt) in cucumber. Acta Hortic Sin 33:140–142 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Guan Y (2008) Mapping and cloning of related gene for fruitspines formation in cucumber (dissertation). Shanghai Jiao Tong University, Shanghai (in Chinese with Englishabstract)

    Google Scholar 

  • Guo Y (2003) Studies on the inheritance of the cucumber bitterness and AFLP molecular marker (dissertation). Northeast Agricultural University, Harbin (in Chinese with English abstract)

    Google Scholar 

  • He NW, Yang XB, Tian LM, Zhao Y (2011) In vitro antioxidant activity of cucumber polysaccharides. Food Sci 32:70–74 (in Chinese with English abstract)

    Google Scholar 

  • Hou S, Niu H, Tao Q, Wang S, Gong Z (2017) A mutant in the CsDET2 gene leads to a systemic brassinosteriod deficiency and super compact phenotype in cucumber (Cucumis sativus L.). Theor Appl Genet 130:1693–1703

    CAS  PubMed  Google Scholar 

  • Hu Y, Zhao S (2010) RAPD technology and its application on plant research. Biotechnol Bull 5:74–77 (in Chinese with English abstract)

    Google Scholar 

  • Hu BW, Li DW, Liu X, Qi JJ, Gao DL, Zhao SQ, Huang SW, Sun JJ, Yang L (2017) Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol Plant 10:1575–1578

    CAS  PubMed  Google Scholar 

  • Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fang W, Lucas WJ et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    CAS  PubMed  Google Scholar 

  • Juwattanasomran R, Somta P, Chankaew S, Shimizu T, Wongpornchai S (2011) A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety “Kaori” and SNAP marker development for the fragrance. Theor Appl Genet 122:533–541

    CAS  PubMed  Google Scholar 

  • Li Y (2008) SRAP markers linked to the green skin trait of cucumber (dissertation). Northwest A&F University, Yangling (in Chinese with English abstract)

    Google Scholar 

  • Li Y, Yang L, Pathak M, Li D, He X, Weng Y (2011) Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123:973–983

    PubMed  Google Scholar 

  • Li Y, Wen C, Weng Y (2013) Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theor Appl Genet 126:2187–2196

    CAS  PubMed  Google Scholar 

  • Li YP, Liang KJ, Li MT, Zhang Y, Zhou SK, Chen X, Lang JB (2015) Nutritional content and function of cucumber and grafting technique. Shanghai Agric Sci Technol 1:89–131 (in Chinese)

    Google Scholar 

  • Li PK, Wang P, Wang FQ, Guo ZF, Yin HP, Zhang ZP (2016) Report on white cucumber strain 05-33-6-1-2-49 by space mutation. Gansu Agric Sci Technol 8:27–29 (in Chinese with English abstract)

    Google Scholar 

  • Li CX, Li YH, Su SY, Liu G, Han JL (2017) Breeding and cultivation techniques of a new cucumber variety Tangza No.8. J Hebei Agric Sci 21:89–92 (in Chinese with English abstract)

    Google Scholar 

  • Li HB, Wang H, Fang BF (2009) New variety Hang Yan 1 of cucumber. J Changjiang Veg 23:10 (in Chinese)

    Google Scholar 

  • Liang C, Li G (2001) Factors affecting the appearance quality of cucumber and preventive measures. Inner Mong Agric Sci Technol S1:18 (in Chinese)

    Google Scholar 

  • Lin T, Wang S, Zhong Y, Gao D, Cui Q, Chen H, Zhang Z, Shen H, Weng Y, Huang S (2016) A truncated f-box protein confers the dwarfism in cucumber. J Genet Genom 43:223–226

    Google Scholar 

  • Liu X, Ning K, Che G, Yan S, Han L (2018) CsSPL functions as an adaptor between HD-ZIP III and CsWUS transcription factors regulating anther and ovule development in cucumber. Plant J 94:535–547

    CAS  PubMed  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127(7):1491–1499

    PubMed  Google Scholar 

  • Lv SZ, Ma DH, Huo ZR, Shen WY, Li SJ, Chen ZW (1994) A new variety Jinchun NO.4 of cucumber with high yield and disease resistance. China Veg 2:1–3 (in Chinese)

    Google Scholar 

  • Maheswaran M (2004) Molecular markers: history, features and applications. Department of Plant Molecular Biology and Biotechnology

  • Miao H, Zhang S, Wang M, Wang Y, Weng Y, Gu X (2016) Fine mapping of virescent leaf gene v-1 in cucumber (Cucumis sativus L.). Int J Mol Sci 17:1602

    PubMed Central  Google Scholar 

  • Naegele RP, Wehner TC (2017) Genetic resources of cucumber. In: Grumet R, Katzir N, Garcia-Mas J (eds) Genetics and genomics of Cucurbitaceae. Springer, Berlin, pp 61–86

    Google Scholar 

  • Nie J, Wang Y, He H, Guo C, Zhu W, Pan J, Li D, Lian H, Pan J, Cai R (2015) Loss-of-function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativus L.). Front Plant Sci 6:1155

    PubMed  PubMed Central  Google Scholar 

  • Ohbayashi K, Ishikawa N, Hodoki Y, Okada Y, Shimada M (2019) Rapid development and characterization of EST-SSR markers for the honey locust seedbeetle, Megabruchidius dorsalis (Coleoptera: Bruchidae), using de novo transcriptome analysis based on next-generation sequencing. Appl Entomol Zool 54:141–145

    Google Scholar 

  • Pan Y, Qu S, Bo K, Gao M (2017a) QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theor Appl Genet 130:1531–1548

    CAS  PubMed  Google Scholar 

  • Pan YP, Liang XJ, Gao ML, Liu HQ, Meng HW, Weng YQ, Chen ZH (2017b) Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor Appl Genet 130:573–586

    CAS  PubMed  Google Scholar 

  • Pan J, Tan J, Wang Y, Zheng X, Owens K, Li D, Li Y, Weng Y (2018) STAYGREEN (CsSGR) is a candidate for the anthracnose (Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber. Theor Appl Genet 131:1577–1587

    CAS  PubMed  Google Scholar 

  • Pramnoi P, Somta P, Chankaew S, Juwattanasomran R, Srinives P (2013) A single recessive gene controls fragrance in cucumber (Cucumis sativus L.). J Genet 92:147–149

    CAS  PubMed  Google Scholar 

  • Qi J, Xin L, Shen D, Han M, Xie B, Li XX, Zeng P et al (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515

    CAS  PubMed  Google Scholar 

  • Ratcliffe OJ, Bradley DJ, Coen ES (1999) Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120

    CAS  PubMed  Google Scholar 

  • Ren G (2013) The research on genetic transformation of tuberculate fruit gene Tu in cucumber (Cucumis sativus L.) and gene mapping of non-lateral-branch gene nlb in cucumber (Cucumis sativus L.) (dissertation). Shanghai Jiao Tong University, Shanghai (in Chinese with English abstract)

  • Sakata Y, Kubo N, Morishita M, Kitadani E, Sugiyama M, Hirai M (2006) QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet 112:243–250

    CAS  PubMed  Google Scholar 

  • Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, Chen H, Zeng J et al (2014) Plant science. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346:1084–1088

    CAS  PubMed  Google Scholar 

  • Shen JJ, Zhang YQ, Ge DF, Wang ZY, Song WY, Gua R, Che G, Cheng ZH, Liu RY, Zhang XL (2019) CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. Proc Natl Acad Sci USA 116:17105–17114

    CAS  PubMed  Google Scholar 

  • Shi QX, Liu SQ, Li Z, Cao CX, Li Y, Huang SW (2009) Three co-dominant markers linked to M gene in Cucumis sativus. Acta Hortic Sin 36:737–742 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Shi XF, Li Q, Li XH, Xiao C, Wang SN (2010) The anti-oxidation effect of Cucumis sativus Linn. flavonoids. Food Res Dev 31:85–86 (in Chinese with English abstract)

    Google Scholar 

  • Song M, Wei Q, Wang J, Fu W, Qin X, Lu X, Cheng F et al (2018) Fine mapping of CsVYL, conferring virescent leaf through the regulation of chloroplast development in cucumber. Front Plant Sci 9:432

    PubMed  PubMed Central  Google Scholar 

  • Sun HT, Qin ZW, Zhou XY, Wu T, Pan DD (2010) Genetic analysis and molecular localization of the fruit diameter in cucumber. Chin Agric Bull 26:38–42 (in Chinese with English abstract)

    Google Scholar 

  • Wang L (2011) Isolation, expression, SSR marker analysis of genes related to parthenocary of cucumber (dissertation). Nanjing Agricultural University, Nanjing (in Chinese with English abstract)

    Google Scholar 

  • Wang GL, Qin ZW, Zhou XY, Zhao CY (2007) Genetic analysis and SSR markers of tuberculate trait in Cucumis sativus. Chin Bull Bot 24:168–172 (in Chinese with English abstract)

    Google Scholar 

  • Wang FQ, Yin HP, Guo ZF, Zhang ZP (2016) Breeding and characteristics of a white cucumber cultivar Hangyu Cucumber No.1. J Changjiang Veg 16:30–33 (in Chinese with English abstract)

    Google Scholar 

  • Wang H, Wanqing L, Yaguang Q, Yupeng P, Xiaofeng W (2017) The cytochrome P450 gene CsCYP85A1 is a putative candidate for super compact-1 (Scp-1) plant architecture mutation in cucumber (Cucumis sativus L.). FRONT PLANT SCI 8:266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Junyi T, Zhiming WKV, Todd CW, Changlong W, Zheng X, Ken O et al (2018) STAYGREEN, STAY HEALTHY: a loss-of-susceptibility mutation in the STAYGREEN gene provides durable, broad-spectrum dis- ease resistances for over 50 years of US cucumber production. New Phytol 221:415–430

    PubMed  Google Scholar 

  • Wei Q, Fu W, Wang Y, Qin X, Wang J, Li J, Lou Q et al (2016) Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. SCI Rep UK 6:27496

    CAS  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    CAS  PubMed  Google Scholar 

  • Wen C, Mao A, Dong C, Liu H, Yu S, Guo Y, Weng Y, Xu Y (2015) Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L. Theor Appl Genet 128:2495–2506

    CAS  PubMed  Google Scholar 

  • Weng Y, Johnson S, Staub JE, Huang S (2010) An extended intervarietal microsatellite linkage map of cucumber, Cucumis sativus L. HortScience 45:882–886

    Google Scholar 

  • Wu Z, Zhang T, Li L, Xu J, Qin XD, Zhang TL, Cui L et al (2016) Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing. BMC Plant Biol 16:182

    PubMed  PubMed Central  Google Scholar 

  • Xu C, Zhao BH (2009) The development and application of SRAP molecular markers. Life Sci Instrum 7:24–27 (in Chinese with English abstract)

    Google Scholar 

  • Xu XW, Lu L, Zhu BY, Xu Q, Qi XH, Chen XH (2015) QTL mapping of cucumber fruit flesh thickness by SLAF-seq. Sci Rep 5:15829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Yu T, Xu R, Shi Y, Lin X, Xu Q, Qi X, Weng Y, Chen X (2016) Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes. Theor Appl Genet 129:507–516

    CAS  PubMed  Google Scholar 

  • Xu X, Ji J, Xu Q, Qi X, Chen X (2017) Inheritance and quantitative trail loci mapping of adventitious root numbers in cucumber seedlings under waterlogging conditions. Mol Genet Genomics 292:353–364

    CAS  PubMed  Google Scholar 

  • Xu L, Wang C, Cao W, Zhou S, Wu T (2018a) CLAVATA1-type receptor-like kinase CsCLAVATA1 is a putative candidate gene for dwarf mutation in cucumber. Mol Genet Genomics 293:1393–1405

    CAS  PubMed  Google Scholar 

  • Xu X, Ji J, Xu Q, Qi X, Weng Y, Chen X (2018b) The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation. Plant J 93:917–930

    CAS  PubMed  Google Scholar 

  • Yan L (2009) Studies on physiological and genetic analysis and molecular markers of parthenocarpy in cucumber (Cucumis sativus L.) (dissertation). Nanjing Agricultural University, Nanjing (in Chinese with English abstract)

  • Yan H, Gao L, Li G (2006) Development and application of molecular marker technology. Bull Biol 41:17–20 (in Chinese)

    Google Scholar 

  • Yang XH (2012) Breeding and cultivation techniques of new cucumber variety ‘Jining 726’ (dissertation). Shangdong Agricultural University, Tianan (in Chinese with English abstract)

    Google Scholar 

  • Yang X (2014) Mapping and functional analyses of the tuberculate fruit gene Tu and the dull fruit skin gene D in cucumber (dissertation). Shanghai Jiao Tong University, Shanghai (in Chinese with English abstract)

    Google Scholar 

  • Yang SJ, Chang YQ, Zheng LH, Wei ZR, Qu HG, Cao SG (2005) Protective effects of cucurbitacin B on the acute liver injury induced by CCL4. Food Sci 26:9 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Yang SJ, Miao H, Zhang SP, Chen ZC, Zhou J, Dong SY, Gu XF (2011) Genetic analysis and mapping of gl-2 gene in cucumber (Cucumis sativus L.). Acta Hortic Sin 38:1685–1692 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Yang L, Liu H, Zhao J, Pan Y, Cheng S, Lietzow CD, Wen C et al (2018) LITTLE LEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. Plant J 95:834–847

    CAS  Google Scholar 

  • Yang S, Wen C, Liu B, Cai Y, Xue S, Bartholomew ES, Dong M et al (2019) A CsTu-TS1 regulatory module promotes fruit tubercule formation in cucumber. Plant Biotechnol J 17:289–301

    CAS  PubMed  Google Scholar 

  • Ye BP, Bai SN, Cao ZX (2000) ACC synthase gene (ACSG) as a possible molecular marker for female lines in cucumber. Acta Bot Sin 42:765–766 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Yundaeng C, Somta P, Tangphatsornruang S, Chankaew S, Srinives P (2015) A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance. Theor Appl Genet 128:1881–1892

    CAS  PubMed  Google Scholar 

  • Zhang P (2009) Mapping quantitative traits loci and proteomics studies on bending of cucumber fruit (dissertation). Northeast Agricultural University, Harbin (in Chinese with English abstract)

    Google Scholar 

  • Zhang ZY, Ni LF, Rui MF, Ye GR (2005) Space breeding cucumber-space 96-1. Shanghai Veg 5:26 (in Chinese with English abstract)

    Google Scholar 

  • Zhang W, He H, Guan Y, Du H, Yuan L, Li Z, Yao D, Pan J, Cai R (2010) Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theor Appl Genet 120:645–654

    CAS  PubMed  Google Scholar 

  • Zhang YT, Ou YDY, He XH (2012) Progress in antitumor effect of cucurbitacin B and its mechanism. Chin J Pharmacol Toxicol 26:112–115 (in Chinese with English abstract)

    Google Scholar 

  • Zhang Z, Mao L, Chen H, Bu F, Li G (2015) Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell 27:1595–1604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao P (2011) Genetic analysis of carpopodium length in cucumber and identification of its quantative trait loci (dissertation). Northeast Agricultural University, Harbin (in Chinese with English abstract)

    Google Scholar 

  • Zhao W, Chen Z, Liu X, Che G, Gu R, Zhao J, Wang Z, Hou Y, Zhang X (2018) CsLFY is required for shoot meristem maintenance via interaction with WUSCHEL in cucumber (Cucumis sativus). New Phytol 218:344–356

    CAS  PubMed  Google Scholar 

  • Zhao J, Jiang L, Che G, Pan Y, Li Y, Hou Y, Zhao W, Zhong Y, Ding L, Yan S, Sun C, Liu R, Yan L, Wu T, Li X, Weng Y, Zhang X (2019) A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. Plant Cell 31:1289–1307

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Science Foundation of Zhejiang Province (Grant No. Y19C150016) and National Natural Science Foundation of China (Grant Nos. 31872105, 31801862 and 3180186).

Author information

Authors and Affiliations

Authors

Contributions

HSW, SJF and ZL jointly conceived the review, conducted the literature review and wrote the manuscript. JPZ, ZHM and YJW collected the literature. CLW, TW and YC provided critical comments on the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Zheng Li or Huasen Wang.

Additional information

Communicated by Kai Shi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Zhang, J., Mu, Z. et al. Recent progress on the molecular breeding of Cucumis sativus L. in China. Theor Appl Genet 133, 1777–1790 (2020). https://doi.org/10.1007/s00122-019-03484-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03484-0

Navigation