Skip to main content
Log in

Difference in glucose tolerance between phytophagous and insectivorous bats

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Bats are mostly insectivorous or phytophagous. It is hypothesized that bats are evolved from small insectivorous mammals. Therefore, the digestive and metabolic systems of phytophagous and insectivorous bats must have evolved differently to adapt to their dietary habits. To investigate the difference in sugar tolerance in bats, we determined changes in blood glucose levels after intraperitoneal (i.p.) injection of glucose in three species of phytophagous and four species of insectivorous bats under resting conditions. Results showed that phytophagous bats eliminated blood glucose faster than insectivorous bats. All three species of fruit bats reduced blood glucose to fasting levels within 30–45 min, whereas all insectivorous bats failed to lower blood glucose to fasting levels even 120 min after i.p. glucose injection. Taken together, results of this study suggest that bats have undergone adaptations and become diversified in dietary habits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altringham JD (1996) Bats: biology and behaviour. Oxford University Press, Oxford

    Google Scholar 

  • Amitai O, Holtze S, Barkan S et al (2010) Fruit bats (Pteropodidae) fuel their metabolism rapidly and directly with exogenous sugars. J Exp Biol 213(15):2693–2699

    Article  CAS  Google Scholar 

  • Balcombe JP, Barnard ND, Sandusky C (2004) Laboratory routines cause animal stress. J Am Assoc Lab Anim Sci 43(6):42–51

    CAS  Google Scholar 

  • Bassett JE (2004) Role of urea in the postprandial urine concentration cycle of the insectivorous bat Antrozous pallidus. Comp Biochem Physiol A Mol Integr Physiol 137(2):271–284

    Article  Google Scholar 

  • Caviedes-Vidal E, Chediack JG, Cruz-Neto AP et al (2004) Sugar absorption in bats. Are they mammals or birds? Integr Compar Biol 44(6):534

    Google Scholar 

  • Caviedes-Vidal E, Karasov WH, Chediack JG et al (2008) Paracellular absorption: a bat breaks the mammal paradigm. PLoS One 3(1):e1425

    Article  Google Scholar 

  • Chippendale GM (1978) The functions of carbohydrates in insect life processes. In: Rockstein M (ed) Biochemistry of insects. Academic Press, London, pp 2–57

    Google Scholar 

  • Datzmann T, von Helversen O, Mayer F (2010) Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). BMC Evol Biol 10(1):165

    Article  Google Scholar 

  • del Rio CM (1994) Nutritional ecology of fruit-eating and flower-visiting birds and bats. The digestive system in mammals: food, form and function. Cambridge University Press, Cambridge, pp 103–127

    Google Scholar 

  • del Rio CM, Karasov WH (1990) Digestion strategies in nectar-and fruit-eating birds and the sugar composition of plant rewards. Am Nat 136(5):618–637

    Article  Google Scholar 

  • del Rio CM, Baker HG, Baker I (1992) Ecological and evolutionary implications of digestive processes: bird preferences and the sugar constituents of floral nectar and fruit pulp. Experientia 48(6):544–551

    Article  Google Scholar 

  • Hill JE, Smith JD (1984) Bats: a natural history. Cambridge University Press, Cambridge

    Google Scholar 

  • Karasov WH, Hume ID (1997) Vertebrate gastrointestinal system. Compr Physiol 119:853–859

    Google Scholar 

  • Keegan DJ (1984) Glucose absorption in the fruit bat studied using the intestinal ring method. S Afr J Sci 80:132

    Google Scholar 

  • Kunz TH (1988) Ecological and behavioral methods for the study of bats. Smithsonian Institution Press, Washington

    Google Scholar 

  • Kunz TH, Fenton MB (2003) Bat ecology. The University of Chicago Press, Chicago

    Google Scholar 

  • Ma J, Jones G, Zhang S et al (2003) Dietary analysis confirms that Rickett’s big-footed bat (Myotis ricketti) is a piscivore. J Zool 261(3):245–248

    Article  Google Scholar 

  • Madara JL, Pappenheimer JR (1987) Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membr Biol 100(1):149–164

    Article  CAS  Google Scholar 

  • McNab BK (1973) Energetics and the distribution of vampires. J Mammal 54(1):131–144

    Article  Google Scholar 

  • Michelmore AJ, Keegan DJ, Kramer B (1998) Immunocytochemical identification of endocrine cells in the pancreas of the fruit bat, Rousettus aegyptiacus. Gen Comp Endocrinol 110(3):319–325

    Article  CAS  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE et al (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409(6820):614

    Article  CAS  Google Scholar 

  • Norberg UM, Fenton MB (1988) Carnivorous bats? Biol J Linnean Soc 33(4):383–394

    Article  Google Scholar 

  • Pappenheimer JR (1987) Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J Membr Biol 100(1):137–148

    Article  CAS  Google Scholar 

  • Pappenheimer JR, Reiss KZ (1987) Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol 100(1):123–136

    Article  CAS  Google Scholar 

  • Protzek AOP, Rafacho A, Viscelli BA et al (2010) Insulin and glucose sensitivity, insulin secretion and β-cell distribution in endocrine pancreas of the fruit bat Artibeus lituratus. Comp Biochem Physiol A Mol Integr Physiol 157(2):142–148

    Article  CAS  Google Scholar 

  • Schondube JE, Herrera-M LG, del Rio CM (2001) Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology 104(1):59–73

    Article  CAS  Google Scholar 

  • Shen B, Han X, Zhang J et al (2012) Adaptive evolution in the glucose transporter 4 gene Slc2a4 in Old World fruit bats (Family: Pteropodidae). PLoS One 7(4):e33197

    Article  CAS  Google Scholar 

  • Teeling EC, Madsen O, Van Den Bussche RA et al (2002) Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc Natl Acad Sci 99(3):1431–1436

    Article  CAS  Google Scholar 

  • Teeling EC, Madsen O, Murphy WJ et al (2003) Nuclear gene sequences confirm an ancient link between New Zealand’s short-tailed bat and South American noctilionoid bats. Mol Phylogenet Evol 28(2):308–319

    Article  CAS  Google Scholar 

  • Teeling EC, Springer MS, Madsen O et al (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307(5709):580–584

    Article  CAS  Google Scholar 

  • Tracy CR, McWhorter TJ, Korine C et al (2007) Absorption of sugars in the Egyptian fruit bat (Rousettus aegyptiacus): a paradox explained. J Exp Biol 210(10):1726–1734

    Article  CAS  Google Scholar 

  • Widmaier EP, Kunz TH (1993) Basal, diurnal, and stress-induced levels of glucose and glucocorticoids in captive bats. J Exp Biol 265(5):533–540

    CAS  Google Scholar 

  • Zhang Q (2017) Comparison of glucose metabolism capacity and islet cell characteristics between Cynopterus sphinx and Hipposideros armiger. Central South University of Forestry and Technology, ChangSha

    Google Scholar 

Download references

Acknowledgements

We thank Hui Liu, Qin Zhang, Qiqi Shen, and Jiao Zhao for their help with animal experiments, Quangsheng Liu for valuable advices. We also thank Prof. Yi-Hsuan Pan for providing experimental material. This work was supported by grants from the GDAS Special Project of Science and Technology Development (2017GDASCX-0107 and 2018GDASCX-0107), the Science & Technology Planning Project of Guangzhou (201707010128), and the Guangdong Provincial Science and Technology Program (2018B030324001).

Author information

Authors and Affiliations

Authors

Contributions

XP, XH, and LZ designed the study. XP performed the experiments. XP, XH, YS, JL, HX, and JW collected bats. XP, LZ, XH, YS, JL, HX, and JW analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Libiao Zhang.

Additional information

Communicated by Noga Kronfeld-Schor.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., He, X., Sun, Y. et al. Difference in glucose tolerance between phytophagous and insectivorous bats. J Comp Physiol B 189, 751–756 (2019). https://doi.org/10.1007/s00360-019-01242-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-019-01242-8

Keywords

Navigation