Skip to main content
Log in

Combination of Simple Sequence Repeat, S-Locus Polymorphism and Phenotypic Data for Identification of Tunisian Plum Species (Prunus spp.)

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Plums (Prunus spp.) are among the first fruit tree species that attracted human interest. Artificial crosses between wild and domesticated species of plums are still paving the way for creation of new phenotypic variability. In Tunisia, despite a considerable varietal richness of plum as well as a high economic value, the plum sector is experiencing a significant regression. The main reason of this regression is the absence of a national program of plum conservation. Hence, this work was aimed to phenotypically and genetically characterize 23 Tunisian plum accessions to preserve this patrimony. Closely related Prunus species from the same subgenus may be differing at two characteristics: ploidy level and phenotypic traits. In this study, single sequence repeat (SSR) markers allowed distinguishing between eighteen diploid accessions and five polyploid accessions, but SSR data alone precluded unambiguous ploidy estimation due to homozygosity. In contrast, S-allele markers were useful to identify the ploidy level between polyploid species, but they did not distinguish species with the same ploidy level. Seven out of 12 phenotypic traits were shown to be discriminant traits for plum species identification. Molecular and phenotypic traits were significantly correlated and revealed a powerful tool to draw taxonomic and genotypic keys. The results obtained in this work are of great importance for local Tunisian plum germplasm management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DNA:

Desoxyribonucleic acid

GSI:

Gametophytic self-incompatibility system

PCR:

Polymerase chain reaction

SFB:

S-Haplotype-specific F-box

S-RNase:

S-Ribonuclease

UPOV:

Union internationale de la Protection des Obtentions Variétales

References

  • Abdallah D, Baraket G, Ben Tamarzizt H, Ben Mustapha S, Salhi-Hannachi A (2016) Identification, evolutionary patterns and intragenic recombination of the gametophytic self incompatibility pollen gene (SFB) in Tunisian Prunus species (Rosaceae). Plant Mol Biol Rep 34:339–352

    Article  CAS  Google Scholar 

  • Arús P, Messeguer R, Viruel F, Tobutt K, Dirlewanger E, Santi F, Quarta R, Ritter E (1994) The European Prunus mapping Project 1994b. In: Schmidt H, Kellerhals M (eds) Progress in temperate furit breeding. Kluwer Academic Publishers, Amsterdam, pp 305–308

    Chapter  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Browicz K, Zohary D (1996) The genus Amygdalus L. (Rosaceae): species relationships, distribution and evolution under domestication. Genet Resour Crop Evol 43:229–247

    Article  Google Scholar 

  • Carrière EA (1872) Amygdalopsis lindleyi. Rev Hortic 1872:33–34

    Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Darlington CD, Ammal Janaki EK (1945) Chromosome atlas of flowering plants. Allen Unwin LTD, London

    Google Scholar 

  • Das B, Ahmed N, Singh P (2011) Prunus diversity—early and present development: a review. Int J Biodivers Conserv 14:721–734

    Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arùs P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) Isolation of DNA from fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • El Dabbagh N (2016) Analyse de la diversité de processus de développement racinaire chez les Prunus. Aptitude au bouturage et réponses à la contrainte hydrique. Science agricoles. Université d‘Avignon, France

  • Eldridge L, Ballard R, Baird WV, Abbot A, Morgens P, Callahan A, Scorza R, Monet R (1992) Application of RFLP analysis to genetic linkage mapping in peaches. Sci Hortic 27:160–163

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    Article  CAS  Google Scholar 

  • FAOstat (2016) Food and agriculture organization of the United Nations. 798 FAO Statistics Division

  • Fernández-Cruz J, Fernández-López J, Miranda-Fontaíña ME, Díaz Vazquez R, Toval G (2014) Molecular characterization of Spanish Prunus avium plus trees. For Syst 23:120–128

    Google Scholar 

  • Galli ZS, Halàsz G, Kiss E, Heszky L, Dobrànszki J (2005) Molecular identification of commercial apple cultivars with microsatellite markers. Sci Hortic 40:1974–1977

    CAS  Google Scholar 

  • García-Verdugo D, Calleja JA, Vargas P, Silva L, Moreira O, Pulido F (2013) Polyploidy and microsatellite variation in the relict tree Prunus lusitanica L.: how effective are refugia in preserving genotypic diversity of clonal taxa? Mol Ecol 22:1546–1557

    Article  PubMed  Google Scholar 

  • Gu CZ, Bartholomew B (2003) Prunus Linnaeus. Flora China 9:401–403

    Google Scholar 

  • Halász J, Makovics-Zsoha N, Szöke F, Ercilis S, Hegedüs A (2017) Simple sequence repeat and S-locus genotyping to explore genetic variability in polyploid Prunus spinosa and P. insititia. Biochem Genet 55:22–33

    Article  CAS  PubMed  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Janick J (2005) The origins of fruits, fruit growing, and fruit breeding. Plant breeding reviews. Wiley, New York, pp 255–321

    Google Scholar 

  • Janick J, Moore JN (1975) Advances in fruit breeding. Purdue University Press, West Lafayette

    Google Scholar 

  • Kao TH, Tsukamoto T (2004) The molecular and genetic bases of SRNase-based self-incompatibility. Plant Cell 16:72–83

    Article  Google Scholar 

  • Khadivi-Khub A, Anjam K (2014) Morphological characterization of Prunus scoparia using multivariate analysis. Plant Syst Evol 300:1361–1372

    Article  Google Scholar 

  • Kota-Dombrovska I, Lācis G (2013) Evaluation of selfincompatibility locus diversity of domestic plum (Prunus domestica L.) using DNA-based S-genotyping. Proc Latv Acad Sci Sect B 67(2):109–115

    Google Scholar 

  • Lee S, Wen J (2001) A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of ribosomal DNA. Am J Bot 88:150–160

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Smith T, Liu CJ, Awasthi N, Yang J, Wang YF, Li CS (2011) Endocarps of Prunus (Rosaceae: Prunoideae) from the early Eocene of Wutu, Shandong Province, China. Taxon 60:555–564

    Article  Google Scholar 

  • Linnaeus C (1753) Species plantarum. Salvius, Stockholm

    Google Scholar 

  • Liu WS, Liu DC, Feng CJ, Zhang AM, Li SH (2005) Genetic diversity and phylogenetic relationships in plum germplasm resources revealed by RAPD markers. J Hortic Sci Biotechnol 81:242–250

    Article  Google Scholar 

  • Mestre L, Reig G, Betrán J, Moreno MA (2017) Influence of plum rootstocks on agronomic performance, leaf mineral nutrition and fruit quality of ‘Catherina’ peach cultivar in heavy-calcareous soil conditions. Span J Agric Res 15:e0901

    Article  Google Scholar 

  • Mnejja M, Garcia J, Howad W, Badenes ML, Arùs P (2004) Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:163–166

    Article  CAS  Google Scholar 

  • Mnejja M, Garcias J, Howad W, Arùs P (2005) Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol Eco Notes 5:531–535

    Article  CAS  Google Scholar 

  • Mowrey BD, Werner DJ (1990) Phylogenetic relationships among species of Prunus as inferred by isoenzyme markers. Theor Appl Genet 80:129–133

    Article  CAS  PubMed  Google Scholar 

  • Nabli M (2011) La flore de la Tunisie, Mise à jour 2011

  • OCDE (2002) Consensus document on the biology of Prunus spp. (stone fruits), Environment Directorate. Org. Eco. Co-op. and Dev. Paris, pp 1–42

  • Rehder A (1940) Manual of cultivated trees and shrubs hardy in North America. Exclusive of the subtropical and warmer temperate regions, 2nd edn. MacMillan, New York

    Google Scholar 

  • Reig G, Jiménez S, Mestre L, Font iForcada C, Betrán JA, Moreno MA (2018) Horticultural, leaf mineral and fruit quality traits of two ‘Greengage’ plum cultivars budded on plum based rootstocks in Mediterranean conditions. Sci Hortic 232:84–91

    Article  CAS  Google Scholar 

  • Salazar JA, Ruiz D, Campoy JA, Sanchez-Perez R, Crisosto CH, Martinez-Garcia PJ, Blenda A, Jung S, Main D, Martinez-Gomez P, Rubio M (2014) Quantitative trait loci (QTL) and mandelian trait loci (MTL) analysis in Prunus: a breeding perspective and beyond. Plant Mol Biol Rep 32:1–18

    Article  Google Scholar 

  • Sonneveld T, Tobutt KR, Vaughan SP, Robbins TP (2005) Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S-haplotype-specific F-box gene. Plant Cell 17:37–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, Mori H (1999) Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Am Soc Hortic Sci 124:224–233

    Article  CAS  Google Scholar 

  • UPOV (2014) Union Internationale pour la Protection des Obtentions Végétales. Code UPOV: PRUNU_SAL. Genève. www.upov.int

  • Vaughan SP, Russell K, Sargent DJ, Tobutt KR (2006) Isolation of S-locus F-box alleles in Prunus avium and their application in a novel method to determine self-incompatibility genotype. Theor Appl Genet 112:856–866

    Article  CAS  PubMed  Google Scholar 

  • Wünsch A, Carrera M, Hormaza JI (2006) Molecular characterization of local Spanish peach [Prunus persica (L.) Batsch] germplasm. Genet Resour Crop Evol 53:925–932

    Article  CAS  Google Scholar 

  • Yamane H, Tao R, Sugiura A, Hauck HR, Iezzoni AF (2001) Identification and characterization of S-RNases in tetraploid sour cherry (Prunus cerasus). J Am Soc Hortic Sci 126:661–667

    Article  CAS  Google Scholar 

  • Zeinalabedini M, Majourhat K, Khayam-Nekoui M, Grigorian V, Torchi M, Dicenta F, Martinez-Gomez P (2008) Comparison of the use of morphological, protein and DNA markers in the genetic characterization of Iranian wild Prunus species. Sci Hortic 16:80–88

    Article  CAS  Google Scholar 

  • Zhang SY (1992) Systematic wood anatomy of the Rosaceae. Blumea 37:81–158

    Google Scholar 

  • Zhengy W, Raven P, Deyuan H (2003) Flora of China, vol 9. Science Press, Beijing

    Google Scholar 

  • Zohary D, Hopf M, Weiss E (2013) Domestication of plants in the Old World: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin, 4th edn. OUP, Oxford

    Google Scholar 

Download references

Acknowledgements

This research was financed by the Tunisian ‘Ministère de l’Enseignement supérieur et de la Recherche Scientifique’. We would like to gratefully thank Tunisian farmers for kindly providing plant material and for their help during phenotypic measurements in the fields. We wish to thank the anonymous reviewers and the editors for their critical comments which allowed us to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GB performed the experiments and statistical analyses, developed the genetic analyses and wrote the manuscript. DA provided some plant material discussed and corrected the content. SBM provided some plant material and discussed the content. HBT gave additional information regarding plum and corrected the content. ASH offered experimental instructions, supervised and provided editorial advice.

Corresponding author

Correspondence to Ghada Baraket.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraket, G., Abdallah, D., Ben Mustapha, S. et al. Combination of Simple Sequence Repeat, S-Locus Polymorphism and Phenotypic Data for Identification of Tunisian Plum Species (Prunus spp.). Biochem Genet 57, 673–694 (2019). https://doi.org/10.1007/s10528-019-09922-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-019-09922-4

Keywords

Navigation