Skip to main content
Log in

Functional and effective connectivity based features of EEG signals for object recognition

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Classifying different object categories is one of the most important aims of brain–computer interface researches. Recently, interactions between brain regions were studied using different methods, such as functional and effective connectivity techniques. Functional and effective connectivity techniques are applied to estimate human brain areas connectivity. The main purpose of this study is to compare classification accuracy of the most advanced functional and effective methods in order to classify 12 basic object categories using Electroencephalography (EEG) signals. In this paper, 19 channels EEG signals were collected from 10 healthy subjects; when they were visiting color images and instructed to select the target images among others. Correlation, magnitude square coherence, wavelet coherence (WC), phase synchronization and mutual information were applied to estimate functional cortical connectivity. On the other hand, directed transfer function, partial directed coherence, generalized partial directed coherence (GPDC) were used to obtain effective cortical connectivity. After feature extraction, the scalar feature selection methods including T-test and one-sided-anova were applied to rank and select the most informative features. The selected features were classified by a one-against-one support vector machine classifier. The results indicated that the use of different techniques led to different classifying accuracy and brain lobes analysis. WC and GPDC are the most accurate methods with performances of 80.15% and 64.43%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams S, Meekins R, Beling PA (2017) An empirical evaluation of techniques for feature selection with cost. In: 2017 IEEE international conference on data mining workshops (ICDMW). IEEE, pp 834–841

  • Adey WR, Walter DO, Hendrix CE (1961) Computer techniques in correlation and spectral analyses of cerebral slow waves during discriminative behavior. Exp Neurol 3(6):501–524

    Article  CAS  PubMed  Google Scholar 

  • Amedi A, von Kriegstein K, van Atteveldt NM, Beauchamp MS, Naumer MJ (2005) Functional imaging of human crossmodal identification and object recognition. Exp Brain Res 166(3–4):559–571

    Article  CAS  PubMed  Google Scholar 

  • Babiloni F, Cincotti F, Babiloni C, Carducci F, Mattia D, Astolfi L, Basilisco A, Rossini PM, Ding L, Ni Y, Cheng J (2005) Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function. Neuroimage 24(1):118–131

    Article  CAS  PubMed  Google Scholar 

  • Baccala LA, Takahashi DY, Sameshima K (2006) Computer intensive testing for the influence between time series. In: Schelter B, Winterhalder M, Timmer J (eds) Handbook of time series analysis-recent theoretical developments and applications. pp 411–436

  • Berkman E, Wong DK, Guimaraes MP, Uy ET, Gross JJ, Suppes P (2004) Brain wave recognition of emotions in EEG. In: Psychophysiology, vol 41. Blackwell Publishing Ltd, Oxford, pp S71–S71

  • Brazier MA, Casby JU (1952) Crosscorrelation and autocorrelation studies of electroencephalographic potentials. Electroencephalogr Clin Neurophysiol 4(2):201–211

    Article  CAS  PubMed  Google Scholar 

  • Carter G, Knapp C, Nuttall A (1973) Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing. IEEE Trans Audio Electroacoust 21(4):337–344

    Article  Google Scholar 

  • Chen M, Han J, Guo L, Wang J, Patras I (2015) Identifying valence and arousal levels via connectivity between EEG channels. In: 2015 International conference on affective computing and intelligent interaction (ACII). IEEE, pp 63–69

  • Combrisson E, Jerbi K (2015) Exceeding chance level by chance: the caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J Neurosci Methods 250:126–136

    Article  PubMed  Google Scholar 

  • Déli E, Tozzi A, Peters JF (2017) Relationships between short and fast brain timescales. Cogn Neurodyn 11(6):539–552

    Article  PubMed  PubMed Central  Google Scholar 

  • Delorme A, Makeig S, Fabre-Thorpe M, Sejnowski T (2002) From single-trial EEG to brain area dynamics. Neurocomputing 44:1057–1064

    Article  Google Scholar 

  • Ethofer T, Van De Ville D, Scherer K, Vuilleumier P (2009) Decoding of emotional information in voice-sensitive cortices. Curr Biol 19(12):1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA, Kähkönen S (2005) Functional connectivity in the brain—is it an elusive concept? Neurosci Biobehav Rev 28(8):827–836

    Article  PubMed  Google Scholar 

  • Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2(1–2):56–78

    Article  Google Scholar 

  • Friston KJ, Buchel C (2003) Functional connectivity. Hum Brain Funct 2:999–1018

    Google Scholar 

  • Granger CW (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3):424–438

    Article  Google Scholar 

  • Guler I, Ubeyli ED (2007) Multiclass support vector machines for EEG-signals classification. IEEE Trans Inf Technol Biomed 11(2):117–126

    Article  PubMed  Google Scholar 

  • Hejazi M, Nasrabadi AM (2019) Prediction of epilepsy seizure from multi-channel electroencephalogram by effective connectivity analysis using Granger causality and directed transfer function methods. Cogn Neurodyn 13(5):461–473

    Article  PubMed  PubMed Central  Google Scholar 

  • Horwitz B (2003) The elusive concept of brain connectivity. Neuroimage 19(2):466–470

    Article  PubMed  Google Scholar 

  • Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification. Paper available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

  • Ince NF, Tewfik A, Arica S (2005) Classification of movement EEG with local discriminant bases. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, 2005 (ICASSP’05), vol 5. IEEE, pp v-413

  • Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65(3):203–210

    Article  CAS  PubMed  Google Scholar 

  • Kamiński M, Ding M, Truccolo WA, Bressler SL (2001) Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85(2):145–157

    Article  PubMed  Google Scholar 

  • Khasnobish A, Datta S, Bose R, Tibarewala DN, Konar A (2017) Analyzing text recognition from tactually evoked EEG. Cogn Neurodyn 11(6):501–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khosrowabadi R, Heijnen M, Wahab A, Quek HC (2010) The dynamic emotion recognition system based on functional connectivity of brain regions. In: 2010 IEEE intelligent vehicles symposium (IV). IEEE, pp 377–381

  • Labat D (2005) Recent advances in wavelet analyses: part 1. A review of concepts. J Hydrol 314(1):275–288

    Article  Google Scholar 

  • Lal TN, Schroder M, Hinterberger T, Weston J, Bogdan M, Birbaumer N, Scholkopf B (2004) Support vector channel selection in BCI. IEEE Trans Biomed Eng 51(6):1003–1010

    Article  PubMed  Google Scholar 

  • Lee YY, Hsieh S (2014) Classifying different emotional states by means of EEG-based functional connectivity patterns. PLoS ONE 9(4):e95415

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Yoon S, Kim JI, Jin SH, Chung CK (2014) Functional connectivity of resting state EEG and symptom severity in patients with post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 51:51–57

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cao D, Wei L, Tang Y, Wang J (2015) Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing. Clin Neurophysiol 126(11):2078–2089

    Article  PubMed  Google Scholar 

  • Liu YC, Chang CC, Yang YHS, Liang C (2018) Spontaneous analogising caused by text stimuli in design thinking: differences between higher-and lower-creativity groups. Cogn Neurodyn 12(1):55–71

    Article  PubMed  Google Scholar 

  • Martinovic J, Gruber T, Müller MM (2008) Coding of visual object features and feature conjunctions in the human brain. PLoS ONE 3(11):e3781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milgram J, Cheriet M, Sabourin R (2006) “One against one” or “one against all”: which one is better for handwriting recognition with SVMs? In: Tenth international workshop on frontiers in handwriting recognition. Suvisoft

  • Miller GA, Lutzenberger W, Elbert T (1991) The linked-reference issue in EEG and ERP recording. J Psychophysiol 5(3):273–276

    Google Scholar 

  • Mora-Sánchez A, Dreyfus G, Vialatte FB (2019) Scale-free behaviour and metastable brain-state switching driven by human cognition, an empirical approach. Cogn Neurodyn 13(5):437–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144(3):358–369

    Article  Google Scholar 

  • Müller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B (2008) Machine learning for real-time single-trial EEG-analysis: from brain–computer interfacing to mental state monitoring. J Neurosci Methods 167(1):82–90

    Article  PubMed  Google Scholar 

  • Myers MH, Kozma R (2018) Mesoscopic neuron population modeling of normal/epileptic brain dynamics. Cogn Neurodyn 12(2):211–223

    Article  PubMed  Google Scholar 

  • Nasrolahzadeh M, Mohammadpoory Z, Haddadnia J (2018) Higher-order spectral analysis of spontaneous speech signals in Alzheimer’s disease. Cogn Neurodyn 12(6):583–596

    Article  PubMed  PubMed Central  Google Scholar 

  • Parhizi B, Daliri MR, Behroozi M (2018) Decoding the different states of visual attention using functional and effective connectivity features in fMRI data. Cogn Neurodyn 12(2):157–170

    Article  PubMed  Google Scholar 

  • Peters BO, Pfurtscheller G, Flyvbjerg H (2001) Automatic differentiation of multichannel EEG signals. IEEE Trans Biomed Eng 48(1):111–116

    Article  CAS  PubMed  Google Scholar 

  • Proverbio AM, Del Zotto M, Zani A (2007) The emergence of semantic categorization in early visual processing: ERP indices of animal vs. artifact recognition. BMC Neurosci 8(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Richiardi J, Van De Ville D, Eryilmaz H (2010) Low-dimensional embedding of functional connectivity graphs for brain state decoding. In: 2010 First workshop on brain decoding: pattern recognition challenges in neuroimaging (WBD). IEEE, pp 21–24

  • Richiardi J, Eryilmaz H, Schwartz S, Vuilleumier P, Van De Ville D (2011) Decoding brain states from fMRI connectivity graphs. Neuroimage 56(2):616–626

    Article  PubMed  Google Scholar 

  • Saeid S, Chambers JA (2007) EEG signal processing. Willey, Chichester

    Google Scholar 

  • Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41(12):1110–1117

    Article  CAS  PubMed  Google Scholar 

  • Schelter B, Winterhalder M, Eichler M, Peifer M, Hellwig B, Guschlbauer B, Lücking CH, Dahlhaus R, Timmer J (2006) Testing for directed influences among neural signals using partial directed coherence. J Neurosci Methods 152(1):210–219

    Article  PubMed  Google Scholar 

  • Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193

    Article  PubMed  PubMed Central  Google Scholar 

  • Taghizadeh-Sarabi M, Daliri MR, Niksirat KS (2015) Decoding objects of basic categories from electroencephalographic signals using wavelet transform and support vector machines. Brain Topogr 28(1):33–46

    Article  PubMed  Google Scholar 

  • Tanaka JW, Curran T (2001) A neural basis for expert object recognition. Psychol Sci 12(1):43–47

    Article  CAS  PubMed  Google Scholar 

  • Van Milligen BP, Sanchez E, Estrada T, Hidalgo C, Brañas B, Carreras B, Garcia L (1995) Wavelet bicoherence: a new turbulence analysis tool. Phys Plasmas (1994-present) 2(8):3017–3032

    Article  Google Scholar 

  • Wang X, Fang Y, Cui Z, Xu Y, He Y, Guo Q, Bi Y (2016) Representing object categories by connections: evidence from a mutivariate connectivity pattern classification approach. Hum Brain Mapp 37(10): 3685–3697

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhang J, Liu C, Liu D, Ding X, Zhou C (2012) Graph theoretical analysis of EEG functional connectivity during music perception. Brain Res 1483:71–81

    Article  CAS  PubMed  Google Scholar 

  • Zervakis M, Michalopoulos K, Iordanidou V, Sakkalis V (2011) Intertrial coherence and causal interaction among independent EEG components. J Neurosci Methods 197(2):302–314

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Daliri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tafreshi, T.F., Daliri, M.R. & Ghodousi, M. Functional and effective connectivity based features of EEG signals for object recognition. Cogn Neurodyn 13, 555–566 (2019). https://doi.org/10.1007/s11571-019-09556-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-019-09556-7

Keywords

Navigation