Skip to main content

Advertisement

Log in

The sialoglycan-Siglec-E checkpoint axis in dexamethasone-induced immune subversion in glioma-microglia transwell co-culture system

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Dexamethasone (Dex) is considered as the main steroid routinely used in the standard therapy of brain tumor-induced edema. Strong immunosuppressive effects of Dex on effector systems of the immune system affect the patients’ antitumor immunity and may thereby worsen the prognosis. Siglecs and their interacting sialoglycans have been described as a novel glyco-immune checkpoint axis that promotes cancer immune evasion. Despite the aberrant glycosylation in cancer is described, mechanisms involved in regulation of immune checkpoints in gliomas are not fully understood. The aim of this study was to investigate the effect of Dex on the Siglec-sialic acid interplay and determine its significance in immune inversion in monocultured and co-cultured microglia and glioma cells. Both monocultured and co-cultured in transwell system embryonic stem cell-derived microglia (ESdM) and glioma GL261 cells were exposed to Dex. Cell viability, immune inversion markers, and interaction between sialic acid and Siglec-E were detected by flow cytometry. Cell invasion was analyzed by scratch-wound migration assay using inverted phase-contrast microscopy. Exposure to Dex led to significant changes in IL-1β, IL-10, Iba-1, and Siglec-E in co-cultured microglia compared to naïve or monocultured cells. These alterations were accompanied by increased α2.8-sialylation and Siglec-E fusion protein binding to co-cultured glioma cell membranes. This study suggests that the interplay between sialic acids and Siglecs is a sensitive immune checkpoint axis and may be crucial for Dex-induced dampening of antitumor immunity. The targeting of sialic acid-Siglec glyco-immune checkpoint can be a novel therapeutic method in glioma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bosma I, Reijneveld JC, Douw L, Vos MJ, Postma TJ, Aaronson NK, et al. Health-related quality of life of long-term high-grade glioma survivors. Neuro-Oncology. 2009;11:51–8.

    PubMed  PubMed Central  Google Scholar 

  2. Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell. 2017;31:326–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yan D, Kowal J, Akkari L, Schuhmacher AJ, Huse JT, West BL, et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene. 2017;36:6049–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Varki A. Sialic acids in human health and disease. Trends Mol. Med. 2008;14:351–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vajaria BN, Patel KR, Begum R, Patel PS. Sialylation: an avenue to target cancer cells. Pathol. Oncol. Res. 2016;22:443–7.

    CAS  PubMed  Google Scholar 

  6. Pillai S, Netravali IA, Cariappa A, Mattoo H. Siglecs and immune regulation. Annu. Rev. Immunol. 2012;30:357–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fraschilla I, Pillai S. Viewing Siglecs through the lens of tumor immunology. Immunol. Rev. 2017;276:178–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mingari MC, Vitale C, Romagnani C, Falco M, Moretta L. p75/AIRM1 and CD33, two sialoadhesin receptors that regulate the proliferation or the survival of normal and leukemic myeloid cells. Immunol. Rev. 2001;181:260–8.

    CAS  PubMed  Google Scholar 

  9. Steinke JW, Liu L, Huyett P, Negri J, Payne SC, Borish L. Prominent role of IFN-γ in patients with aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 2013;132:856–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wielgat P, Mroz RM, Stasiak-Barmuta A, Szepiel P, Chyczewska E, Braszko JJ, et al. Inhaled corticosteroids increase siglec-5/14 expression in sputum cells of COPD patients. Adv. Exp. Med. Biol. 2015;839:1–5.

    CAS  PubMed  Google Scholar 

  11. Wielgat P, Trofimiuk E, Czarnomysy R, Braszko JJ, Car H. Sialic acids as cellular markers of immunomodulatory action of dexamethasone on glioma cells of different immunogenicity. Mol. Cell. Biochem. 2019;455:147–57.

    CAS  PubMed  Google Scholar 

  12. Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S, et al. Corticosteroids compromise survival in glioblastoma. Brain. 2016;139:1458–71.

    PubMed  PubMed Central  Google Scholar 

  13. The Cancer Genome Atlas (TCGA). National Institute of Health, Bethesda. 2019. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga

    Google Scholar 

  14. Shields LB, Shelton BJ, Shearer AJ, Chen L, Sun DA, Parsons S, et al. Dexamethasone administration during definitive radiation and temozolomide renders a poor prognosis in a retrospective analysis of newly diagnosed glioblastoma patients. Radiat. Oncol. 2015;10:222.

    PubMed  PubMed Central  Google Scholar 

  15. Wong ET, Lok E, Gautam S, Swanson KD. Dexamethasone exerts profound immunologic interference on treatment efficacy for recurrent glioblastoma. Br. J. Cancer. 2015;113:232–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Napoli I, Kierdorf K, Neumann H. Microglial precursors derived from mouse embryonic stem cells. Glia. 2009;57:1660–71.

    PubMed  Google Scholar 

  17. Rezonja K, Sostaric M, Vidmar G, Mars T. Dexamethasone produces dose-dependent inhibition of sugammadex reversal in in vitro innervated primary human muscle cells. Anesth. Analg. 2014;118:755–63.

    CAS  PubMed  Google Scholar 

  18. Goya L, Feng PT, Aliabadi S, Timiras PS. Effect of growth factors on the in vitro growth and differentiation of early and late passage C6 glioma cells. Int. J. Dev. Neurosci. 1996;14:409–17.

    CAS  PubMed  Google Scholar 

  19. Batash R, Asna N, Schaffer P, Francis N, Schaffer M. Glioblastoma multiforme, diagnosis and treatment; recent literature review. Curr. Med. Chem. 2017;24:3002–9.

    CAS  PubMed  Google Scholar 

  20. Adams OJ, Stanczak MA, von Gunten S, Läubli H. Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer. Glycobiology. 2018;28:640–7.

    CAS  PubMed  Google Scholar 

  21. Pearce OM, Läubli H. Sialic acids in cancer biology and immunity. Glycobiology. 2016;26:111–28.

    CAS  PubMed  Google Scholar 

  22. Amoureux MC, Coulibaly B, Chinot O, Loundou A, Metellus P, Rougon G, et al. Polysialic acid neural cell adhesion molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines. BMC Cancer. 2010;10:1–12.

    Google Scholar 

  23. Petridis AK, Wedderkopp H, Hugo HH, Maximilian MH. Polysialic acid overexpression in malignant astrocytomas. Acta Neurochir. 2009;15:601–4.

    Google Scholar 

  24. Monzo HJ, Coppieters N, Park TIH, Dieriks BV, Faull RLM, Dragunow M, et al. Insulin promotes cell migration by regulating PSA-NCAM. Exp. Cell Res. 2017;355:26–39.

    CAS  PubMed  Google Scholar 

  25. Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD, Klausing S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat. Immunol. 2016;17:1273–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Läubli H, Pearce OM, Schwarz F, Siddiqui SS, Deng L, Stanczak MA, et al. Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc. Natl. Acad. Sci. U. S. A. 2014;111:14211–6.

    PubMed  PubMed Central  Google Scholar 

  27. Haas Q, Boligan KF, Jandus C, Schneider C, Simillion C, Stanczak MA, et al. Siglec-9 regulates an effector memory CD8+ T-cell subset that congregates in the melanoma tumor microenvironment. Cancer Immunol Res. 2019;7:707–18.

    CAS  PubMed  Google Scholar 

  28. Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med. 2019;25:656–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cao G, Xiao Z, Yin Z. Normalization cancer immunotherapy: blocking Siglec-15! Signal Transduct Target Ther. 2019;4:10.

    PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Neumann H. Alleviation of neurotoxicity by microglial human Siglec-11. J. Neurosci. 2010;30:3482–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Salminen A, Kaarniranta K. Siglec receptors and hiding plaques in Alzheimer's disease. J Mol Med (Berl). 2009;87:697–701.

    CAS  PubMed  Google Scholar 

  32. Luedi MM, Singh SK, Mosley JC, Hatami M, Gumin J, Sulman EP, et al. A dexamethasone-regulated gene signature is prognostic for poor survival in glioblastoma patients. J. Neurosurg. Anesthesiol. 2017;29:46–58.

    PubMed  PubMed Central  Google Scholar 

  33. Rouiller Y, Périlleux A, Marsaut M, Stettler M, Vesin MN, Broly H. Effect of hydrocortisone on the production and glycosylation of an Fc-fusion protein in CHO cell cultures. Biotechnol. Prog. 2012;28:803–13.

    CAS  PubMed  Google Scholar 

  34. Burkhardt T, Lüdecke D, Spies L, Wittmann L, Westphal M, Flitsch J. Hippocampal and cerebellar atrophy in patients with Cushing’s disease. Neurosurg. Focus. 2015;39:E5.

    PubMed  Google Scholar 

  35. Zhang H, Zhao Y, Wang Z. Chronic corticosterone exposure reduces hippocampal astrocyte structural plasticity and induces hippocampal atrophy in mice. Neurosci. Lett. 2015;592:76–81.

    CAS  PubMed  Google Scholar 

  36. Wielgat P, Walesiuk A, Braszko JJ. Effects of chronic stress and corticosterone on sialidase activity in the rat hippocampus. Behav. Brain Res. 2011;222:363–7.

    CAS  PubMed  Google Scholar 

  37. Zeng Z, Li M, Wang M, Wu X, Li Q, Ning Q, et al. Increased expression of Siglec-9 in chronic obstructive pulmonary disease. Sci. Rep. 2017;7:10116.

    PubMed  PubMed Central  Google Scholar 

  38. Angata T, Ishii T, Motegi T, Oka R, Taylor RE, Soto PC, et al. Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell. Mol. Life Sci. 2013;70:3199–4010.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577.

    PubMed  PubMed Central  Google Scholar 

  40. Pepe G, De Maglie M, Minoli L, Villa A, Maggi A, Vegeto E. Selective proliferative response of microglia to alternative polarization signals. J. Neuroinflammation. 2017;14:236.

    PubMed  PubMed Central  Google Scholar 

  41. Gjorgjevski M, Hannen R, Carl B, Li Y, Landmann E, Buchholz M, Bartsch JW, Nimsky C. Molecular profiling of the tumor microenvironment in glioblastoma patients: correlation of microglia/macrophage polarization state with metalloprotease expression profiles and survival. Biosci. Rep. 2019;39: pii:BSR20182361.

  42. Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 2016;53:1181–94.

    CAS  PubMed  Google Scholar 

  43. Quatromoni JG, Eruslanov E. Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am. J. Transl. Res. 2012;4:376–89.

    PubMed  PubMed Central  Google Scholar 

  44. Tedesco S, Bolego C, Toniolo A, Nassi A, Fadini GP, Locati M, et al. Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages. Immunobiology. 2015;220:545–54.

    CAS  PubMed  Google Scholar 

  45. Lübbers J, Rodríguez E, van Kooyk Y. Modulation of immune tolerance via Siglec-sialic acid interactions. Front. Immunol. 2018;9:2807.

    PubMed  PubMed Central  Google Scholar 

  46. Graeber MB, Scheithauer BW, Kreutzberg GW. Microglia in brain tumors. Glia. 2002;40:252–9.

    PubMed  Google Scholar 

  47. Roggendorf W, Strupp S, Paulus W. Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol. 1996;92:288–93.

    CAS  PubMed  Google Scholar 

  48. Santegoets KCM, Gielen PR, Büll C, Schulte BM, Kers-Rebel ED, Küsters B, et al. Expression profiling of immune inhibitory Siglecs and their ligands in patients with glioma. Cancer Immunol. Immunother. 2019;68:937–49.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by grant from Medical University of Bialystok (N/ST/ZB/18/001/1166) and grant from National Science Centre (2017/01/X/NZ3/01493).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemyslaw Wielgat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wielgat, P., Czarnomysy, R., Trofimiuk, E. et al. The sialoglycan-Siglec-E checkpoint axis in dexamethasone-induced immune subversion in glioma-microglia transwell co-culture system. Immunol Res 67, 348–357 (2019). https://doi.org/10.1007/s12026-019-09106-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-019-09106-7

Keywords

Navigation