Skip to main content

Advertisement

Log in

Streptococcus pneumoniae Surface Adhesin PfbA Exhibits Host Specificity by Binding to Human Serum Albumin but Not Bovine, Rabbit and Porcine Serum Albumins

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

PfbA (Plasmin(ogen) and Fibronectin Binding protein A) is an adhesin present on the surface of Streptococcus pneumoniae. Initial studies characterized PfbA as plasmin(ogen) and fibronectin binding protein and later it was found that it binds with many other proteins of the extracellular matrix such as fibrinogen, collagen and laminin. It also binds to blood protein human serum albumin (HSA). Interestingly, PfbA exhibits no binding with serum albumins of bovine (BSA), rabbit (RSA) and porcine (PSA) which are sequentially and structurally homologous to HSA. This suggests that PfbA is likely involved in host specificity. Therefore, to get more insights into this aspect, a detailed analysis, which includes the interaction of rPfbA with HSA/BSA/RSA/PSA at different pHs by bio-layer interferometry, comparison of sequences and surface electrostatic potential of HSA/BSA/RSA/PSA, lysine modification of HSA by succinylation and subsequent interaction analysis of succinylated HSA with rPfbA and the secondary structural content estimation by FT-IR spectroscopy was carried out. Since large protrusions are another important geometric feature of protein surfaces, the property was also analyzed for HSA/BSA/RSA/PSA. The results of the above studies clearly suggest that the rPfbA exhibits host specificity by selectively binding only to HSA and not with its homologous BSA/RSA/PSA. Since the three dimensional structures of these albumins are highly similar, it is likely that rPfbA utilizes the differences in the surface electrostatic charge in combination with surface protrusions of HSA/BSA/RSA/PSA for the selective molecular recognition process and this feature may be important in the pathogenesis of pneumococcal infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Loughran AJ, Orihuela CJ, Tuomanen EI (2019) Streptococcus pneumoniae: invasion and inflammation. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.gpp3-0004-2018

    Article  PubMed  PubMed Central  Google Scholar 

  2. Weiser JN, Ferreira DM, Paton JC (2018) Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 16(6):355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pizarro-Cerdá J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124(4):715–727

    Article  PubMed  CAS  Google Scholar 

  4. Dave S, Carmicle S, Hammerschmidt S, Pangburn MK, McDaniel LS (2004) Dual roles of PspC, a surface protein of Streptococcus pneumoniae, in binding human secretory IgA and factor H. J Immunol 173(1):471–477

    Article  CAS  PubMed  Google Scholar 

  5. Rosenow C, Ryan P, Weiser JN et al (1997) Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol 25(5):8

    Article  Google Scholar 

  6. Hakansson A, Roche H, Mirza S, McDaniel LS, Brooks-Walter A, Briles DE (2001) Characterization of binding of human lactoferrin to pneumococcal surface protein A. Infect Immun 69(5):3372–3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morales M, Martin-Galiano AJ, Domenech M, Garcia E (2015) Insights into the evolutionary relationships of LytA autolysin and Ply pneumolysin-like genes in Streptococcus pneumoniae and related streptococci. Genome Biol Evol 7(9):2747–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamaguchi M, Goto K, Hirose Y et al (2019) Identification of evolutionarily conserved virulence factor by selective pressure analysis of Streptococcus pneumoniae. Commun Biol 2(1):96

    Article  PubMed  PubMed Central  Google Scholar 

  9. Papasergi S, Garibaldi M, Tuscano G et al (2010) Plasminogen- and fibronectin-binding protein B is involved in the adherence of Streptococcus pneumoniae to human epithelial cells. J Biol Chem 285(10):7517–7524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamaguchi M, Terao Y, Mori Y, Hamada S, Kawabata S (2008) PfbA, a novel plasmin- and fibronectin-binding protein of Streptococcus pneumoniae, contributes to fibronectin-dependent adhesion and antiphagocytosis. J Biol Chem 283(52):36272–36279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamaguchi M, Hirose Y, Takemura M, Ono M, Sumitomo T, Nakata M, Terao Y, Kawabata S (2019) Streptococcus pneumoniae evades host cell phagocytosis and limits host mortality through its cell wall anchoring protein PfbA. Front Cell Infect Microbiol 9:301

    Article  PubMed  PubMed Central  Google Scholar 

  12. Frolet C, Beniazza M, Roux L, Gallet B, Noirclerc-Savoye M, Vernet T, Di Guilmi AM (2010) New adhesin functions of surface-exposed pneumococcal proteins. BMC Microbiol 10:190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Blanco LP, Payne BL, Feyertag F, Alvarez-Ponce D (2018) Proteins of generalist and specialist pathogens differ in their amino acid composition. Life Sci Alliance 1(4):e201800017

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pan X, Yang Y, Zhang J-R (2014) Molecular basis of host specificity in human pathogenic bacteria. Emerg Microbes Infect 3(3):e23

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hammerschmidt S, Tillig MP, Wolff S, Vaerman J-P, Chhatwal GS (2000) Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol Microbiol 36(3):726–736

    Article  CAS  PubMed  Google Scholar 

  16. Agarwal V, Hammerschmidt S, Malm S, Bergmann S, Riesbeck K, Blom AM (2012) Enolase of Streptococcus pneumoniae binds human complement inhibitor C4b-binding protein and contributes to complement evasion. J Immunol 189(7):3575–3584

    Article  CAS  PubMed  Google Scholar 

  17. Parker RB, McCombs JE, Kohler JJ (2012) Sialidase specificity determined by chemoselective modification of complex sialylated glycans. ACS Chem Biol 7(9):1509–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pickering AC, Vitry P, Prystopiuk V et al (2019) Host-specialized fibrinogen-binding by a bacterial surface protein promotes biofilm formation and innate immune evasion. PLoS Pathog 15(6):e1007816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baumler A, Fang FC (2013) Host specificity of bacterial pathogens. Cold Spring Harb Perspect Med 3(12):a010041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Beulin DSJ, Radhakrishnan D, Suresh SC et al (2017) Streptococcus pneumoniae surface protein PfbA is a versatile multidomain and multiligand-binding adhesin employing different binding mechanisms. FEBS J 284(20):3404–3421

    Article  CAS  PubMed  Google Scholar 

  21. Cayot P, Tainturier G (1997) The quantification of protein amino groups by the trinitrobenzenesulfonic acid method: a reexamination. Anal Biochem 249(2):184–200

    Article  CAS  PubMed  Google Scholar 

  22. Myhre EB, Kronvall G (1980) Demonstration of specific binding sites for human serum albumin in group C and G streptococci. Infect Immun 27(1):6–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Egesten A, Frick I-M, Morgelin M, Olin AI, Bjorck L (2011) Binding of albumin promotes bacterial survival at the epithelial surface. J Biol Chem 286(4):2469–2476

    Article  CAS  PubMed  Google Scholar 

  24. Raghav A, Ahmad J, Alam K (2017) Nonenzymatic glycosylation of human serum albumin and its effect on antibodies profile in patients with diabetes mellitus. PLoS ONE 12(5):e0176970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Steinhardt J, Krijn J, Leidy JG (1971) Differences between bovine and human serum albumins: binding isotherms, optical rotatory dispersion, viscosity, hydrogen ion titration, and fluorescence effects. Biochemistry 10(22):4005–4015

    Article  CAS  PubMed  Google Scholar 

  26. Ha J-S, Ha C-E, Chao J-T, Petersen CE, Theriault A, Bhagavan NV (2003) Human serum albumin and its structural variants mediate cholesterol efflux from cultured endothelial cells. Biochim Biophys Acta 1640(2–3):119–128

    Article  CAS  PubMed  Google Scholar 

  27. Reichenwallner J, Oehmichen M-T, Schmelzer CEH, Hauenschild T, Kerth A, Hinderberger D (2018) Exploring the pH-induced functional phase space of human serum albumin by EPR spectroscopy. Magnetochemistry 4(4):47

    Article  CAS  Google Scholar 

  28. Tanford C, Buzzell JG (1956) The viscosity of aqueous solutions of bovine serum albumin between pH 4.3 and 10.5. J Phys Chem 60(2):225–231

    Article  CAS  Google Scholar 

  29. Böhme U, Scheler U (2007) Effective charge of bovine serum albumin determined by electrophoresis NMR. Chem Phys Lett 435(4):342–345

    Article  CAS  Google Scholar 

  30. Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7(1):58–63

    Article  CAS  PubMed  Google Scholar 

  31. Tayyab S, Haq SK, Sabeeha, Aziz MA, Khan MM, Muzammil S (1999) Effect of lysine modification on the conformation and indomethacin binding properties of human serum albumin. Int J Biol Macromol 26(2–3):173–180

    Article  CAS  PubMed  Google Scholar 

  32. Ishtikhar M, Rabbani G, Khan S, Khan RH (2015) Biophysical investigation of thymoquinone binding to ‘N’ and ‘B’ isoforms of human serum albumin: exploring the interaction mechanism and radical scavenging activity. RSC Adv 5(24):18218–18232

    Article  CAS  Google Scholar 

  33. Yuan L, Liu M, Sun B et al (2017) Calorimetric and spectroscopic studies on the competitive behavior between (−)-epigallocatechin-3-gallate and 5-fluorouracil with human serum albumin. J Mol Liq 248:330–339

    Article  CAS  Google Scholar 

  34. Basu A, Bhayye S, Kundu S, Das A, Mukherjee A (2018) Andrographolide inhibits human serum albumin fibril formations through site-specific molecular interactions. RSC Adv 8(54):30717–30724

    Article  CAS  Google Scholar 

  35. Huang YT, Liao HF, Wang SL, Lin SY (2016) Glycation and secondary conformational changes of human serum albumin: study of the FTIR spectroscopic curve-fitting technique. AIMS Biophys 3(2):247–260

    Article  CAS  Google Scholar 

  36. La D, Rodriguez JE, Venkatraman V, Li B, Sael L, Ueng S, Ahrendt S, Kihara D (2009) 3D-SURFER: software for high throughput protein surface comparison and analysis. Bioinformatics 25:2843–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bessen DE (2016) Tissue tropisms in group A Streptococcus: what virulence factors distinguish pharyngitis from impetigo strains? Curr Opin Infect Dis 29(3):295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li B, Turuvekere S, Agrawal M, La D, Ramani K, Kihara D (2008) Characterization of local geometry of protein surfaces with the visibility criterion. Proteins 71(2):670–683

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KP gratefully acknowledges the Science and Engineering Research Board (SERB), Government of India for the financial support in the form of Grant (No. EMR/2016/000891). KP thanks DST-FIST, Government of India for the DLS and FT-IR equipments sanctioned to the department (No. SR/FST/LSII-037/2014 (C) dt. 29.03.2016). SS thanks SERB for the Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthe Ponnuraj.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar, S., Yamaguchi, M., Kawabata, S. et al. Streptococcus pneumoniae Surface Adhesin PfbA Exhibits Host Specificity by Binding to Human Serum Albumin but Not Bovine, Rabbit and Porcine Serum Albumins. Protein J 39, 1–9 (2020). https://doi.org/10.1007/s10930-019-09875-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09875-y

Keywords

Navigation