Skip to main content

Advertisement

Log in

Childhood-onset autosomal recessive ataxias: a cross-sectional study from Turkey

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Autosomal recessive ataxias (ARAs) are a heterogeneous group of inherited neurodegenerative disorders that affect the cerebellum, the spinocerebellar tract, and/or the sensory tracts of the spinal cord. This study is aimed at establishing molecular classification and phenotypic correlation of childhood-onset ARAs in Southeast Anatolia of Turkey. Sixty-five children (aged 0 to 18) from 40 unrelated families who were analyzed through hereditary ataxia NGS panel between the years of 2015–2018 were selected for the study. Seventeen different, clinically significant ARA-related pathogenic variants were detected in 33 of 40 families (82.5%), 12 of which were noted to be unreported variants. Among these 33 families, 24 had ATM-related (72.72%), four had SACS-related (12.12%), three had COQ8A-related (9.09%), and two had APTX-related (6.06%) pathogenic variants. The c.3576G>A (p.K1192=) was the most common homozygous pathogenic ATM variant (33.33%) that was associated with milder phenotype of ataxia telangiectasia (AT) with the onset of age of 3. Patients with SACS variants demonstrated developmental delay and progressive ataxia before the age of 3. Slowly progressive ataxia and intellectual disability were the common clinical manifestations of the patients with homozygous c.1396delG (p. E466Rfs*11) pathogenic variant in COQ8A. Homozygous APTX c.689T>G (p.V230G) pathogenic variant was identified in two patients who had chief complaint of ataxic gait onset after puberty. The most common types of ARAs in this region are AT- and Charlevoix-Saguenay-type spastic ataxia. ATM gene analysis should be performed foremost on children presenting early-onset ataxia from Southeastern Anatolia. If there is a concomitant peripheral neuron involvement, SACS gene analysis should be preferred. This valuable data will be a guide for the first step molecular diagnostic approach before requesting the NGS panel for ARA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Synofzik M, Németh AH (2018) Recessive ataxias. HandbClin Neurol 155:73–89

    Google Scholar 

  2. Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H et al (2019) The classification of autosomal recessive cerebellar ataxias: a consensus statement from the Society for Research on the Cerebellum and Ataxias Task Force. Cerebellum

  3. Teive HA, Moro A, Moscovich M, Arruda WO, Munhoz RP, Raskin S, Ashizawa T (2015) Ataxia-telangiectasia - a historical review and a proposal for a new designation: ATM syndrome. J Neurol Sci 355(1-2):3–6

    Article  Google Scholar 

  4. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J (2015) et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424

    Article  Google Scholar 

  5. Gilad S, Khosravi R, Shkedy D, Uziel T, Ziv Y, Savitsky K et al (1996) Predominance of null mutations in ataxia-telangiectasia. Hum Mol Genet 5(4):433–439

    Article  CAS  Google Scholar 

  6. Gilad S, Chessa L, Khosravi R, Russell P, Galanty Y, Piane M, Gatti RA, Jorgensen TJ, Shiloh Y, Bar-Shira A (1998) Genotype-phenotype relationships in ataxia-telangiectasia and variants. Am J Hum Genet 62(3):551–561

    Article  CAS  Google Scholar 

  7. Telatar M, Teraoka S, Wang Z, Chun HH, Liang T, Castellvi-Bel S, Udar N, Borresen-Dale AL, Chessa L, Bernatowska-Matuszkiewicz E, Porras O, Watanabe M, Junker A, Concannon P, Gatti RA (1998) Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations. Am J Hum Genet 62(1):86–97

    Article  CAS  Google Scholar 

  8. Broeks A, de Klein A, Floore AN, Muijtjens M, Kleijer WJ, Jaspers NG (1998) van ’t Veer LJ. ATM germline mutations in classical ataxia-telangiectasia patients in the Dutch population. Hum Mutat 12(5):330–337

    Article  CAS  Google Scholar 

  9. Becker-Catania SG, Chen G, Hwang MJ, Wang Z, Sun X, Sanal O, Bernatowska-Matuszkiewicz E, Chessa L, Lee EY, Gatti RA (2000) Ataxia-telangiectasia: phenotype/genotype studies of ATM protein expression, mutations, and radiosensitivity. Mol Genet Metab 70(2):122–133

    Article  CAS  Google Scholar 

  10. Mitui M, Nahas SA, Du LT, Yang Z, Lai CH, Nakamura K et al (2009) Functional and computational assessment of missense variants in the ataxia-telangiectasia mutated (ATM) gene: mutations with increased cancer risk. Hum Mutat 30(1):12–21

    Article  CAS  Google Scholar 

  11. George Priya Doss C, Rajith B (2012) Computational refinement of functional single nucleotide polymorphisms associated with ATM gene. PLoS One 7(4):e34573

    Article  CAS  Google Scholar 

  12. Gilad S, Bar-Shira A, Harnik R, Shkedy D, Ziv Y, Khosravi R, Brown K, Vanagaite L, Xu G, Frydman M, Lavin MF, Hill D, Tagle DA, Shiloh Y (1996) Ataxia-telangiectasia: founder effect among north African Jews. Hum Mol Genet 5(12):2033–2037

    Article  CAS  Google Scholar 

  13. Gutiérrez-Enríquez S, Fernet M, Dörk T, Bremer M, Lauge A, Stoppa-Lyonnet D et al (2004) Functional consequences of ATM sequence variants for chromosomal radiosensitivity. Genes Chromosom Cancer 40(2):109–119

    Article  Google Scholar 

  14. Lowery MA, Wong W, Jordan EJ, Lee JW, Kemel Y, Vijai J, Mandelker D, Zehir A, Capanu M, Salo-Mullen E, Arnold AG, Yu KH, Varghese AM, Kelsen DP, Brenner R, Kaufmann E, Ravichandran V, Mukherjee S, Berger MF, Hyman DM, Klimstra DS, Abou-Alfa GK, Tjan C, Covington C, Maynard H, Allen PJ, Askan G, Leach SD, Iacobuzio-Donahue CA, Robson ME, Offit K, Stadler ZK, O'Reilly EM (2018) Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. J Natl Cancer Inst 110(10):1067–1074

    Article  Google Scholar 

  15. Sandoval N, Platzer M, Rosenthal A, Dörk T, Bendix R, Skawran B, Stuhrmann M, Wegner RD, Sperling K, Banin S, Shiloh Y, Baumer A, Bernthaler U, Sennefelder H, Brohm M, Weber BH, Schindler D (1999) Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum Mol Genet 8(1):69–79

    Article  CAS  Google Scholar 

  16. Anheim M, Fleury M, Monga B, Laugel V, Chaigne D, Rodier G, Ginglinger E., Boulay C., Courtois S., Drouot N., Fritsch M., Delaunoy J.P., Stoppa-Lyonnet D., Tranchant C., Koenig M. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics. 2010;11(1):1-12, 1.

    Article  Google Scholar 

  17. Nemeth AH, Kwasniewska AC, Lise S et al (2013) Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain 136:3106–3118

    Article  Google Scholar 

  18. Mallaret M, Renaud M, Redin C, Drouot N, Muller J, Severac F, Mandel JL, Hamza W, Benhassine T, Ali-Pacha L, Tazir M, Durr A, Monin ML, Mignot C, Charles P, van Maldergem L, Chamard L, Thauvin-Robinet C, Laugel V, Burglen L, Calvas P, Fleury MC, Tranchant C, Anheim M, Koenig M (2016 Jul) Validation of a clinical practice-basedalgorithm for the diagnosis of autosomal recessive cerebellar ataxias based onNGS identified cases. J Neurol 263(7):1314–1322

    Article  CAS  Google Scholar 

  19. Arslan EA, Öncel İ, Ceylan AC, Topçu M, Topaloğlu H (2019) Genetic and phenotypic features of patients with childhood ataxias diagnosed by next-generation sequencing gene panel. Brain and Development

  20. De Braekeleer M, Giasson F, Mathieu J, Roy M, Bouchard JP, Morgan K (1993) Genetic epidemiology of autosomal recessive spastic ataxia of Charlevoix-Saguenay in northeastern Quebec. Genet Epidemiol 10(1):17–25

    Article  Google Scholar 

  21. Takiyama Y (2007) Sacsinopathies: sacsin-related ataxia. Cerebellum 6(4):353–359

    Article  CAS  Google Scholar 

  22. Vermeer S, Meijer RP, Pijl BJ, Timmermans J, Cruysberg JR, Bos MM et al (2008) ARSACS in the Dutch population: a frequent cause of early-onset cerebellar ataxia. Neurogenetics. 9(3):207–214

    Article  Google Scholar 

  23. Akturk H, Sutcu M, Somer A, Piskin S, Acar M, Ozmen M, Altinoglu U, Tatli B, Salman N (2017) Ataxia telangiectasia in Turkey: multisystem involvement of 91 patients. World J Pediatr 13(5):465–471

    Article  Google Scholar 

  24. Suspitsin E, Sokolenko A, Bizin I, Tumakova A, Guseva M, Sokolova N et al (2019) ATM mutation spectrum in Russian children with ataxia-telangiectasia. Eur J Med Genet

  25. Huang Y, Yang L, Wang J, Yang F, Xiao Y, Xia R, Yuan X, Yan M (2013) Twelve novel Atm mutations identified in Chinese ataxia telangiectasia patients. NeuroMolecular Med 15(3):536–540

    Article  CAS  Google Scholar 

  26. Vill K, Müller-Felber W, Gläser D, Kuhn M, Teusch V, Schreiber H et al (2018) SACS variants are a relevant cause of autosomal recessive hereditary motor and sensory neuropathy. Hum Genet 137(11-12):911–919

    Article  CAS  Google Scholar 

  27. Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny HO, Munnich A, Rötig A (2008) CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 82(3):623–630

    Article  CAS  Google Scholar 

  28. Blumkin L, Leshinsky-Silver E, Zerem A, Yosovich K, Lerman-Sagie T, Lev D (2014) Heterozygous mutations in the ADCK3 gene in siblings with cerebellar atrophy and extreme phenotypic variability. JIMD Rep 12:103–107

    Article  Google Scholar 

  29. Date H, Onodera O, Tanaka H, Iwabuchi K, Uekawa K, Igarashi S, Koike R, Hiroi T, Yuasa T, Awaya Y, Sakai T, Takahashi T, Nagatomo H, Sekijima Y, Kawachi I, Takiyama Y, Nishizawa M, Fukuhara N, Saito K, Sugano S, Tsuji S (2001) Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 29(2):184–188

    Article  CAS  Google Scholar 

  30. Castellotti B, Mariotti C, Rimoldi M, Fancellu R, Plumari M, Caimi S, Uziel G, Nardocci N, Moroni I, Zorzi G, Pareyson D, di Bella D, di Donato S, Taroni F, Gellera C (2011) Ataxia with oculomotor apraxia type1 (AOA1): novel and recurrent aprataxin mutations, coenzyme Q10 analyses, and clinical findings in Italian patients. Neurogenetics. 12(3):193–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Mutlu-Albayrak.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutlu-Albayrak, H., Kırat, E. & Gürbüz, G. Childhood-onset autosomal recessive ataxias: a cross-sectional study from Turkey. Neurogenetics 21, 59–66 (2020). https://doi.org/10.1007/s10048-019-00597-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-019-00597-y

Keywords

Navigation