Skip to main content
Log in

Characterizing fine-root traits by species phylogeny and microbial symbiosis in 11 co-existing woody species

  • Ecosystem ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Understanding the differences in fine-root traits among different species is essential to gain a detailed understanding of resource conservation and acquisition strategies of plants. We aimed to explore whether certain root traits are consistent among subsets of species and characterize species together into meaningful community groups. We selected 11 woody species from different microbial symbiotic groups (ectomycorrhiza, arbuscular mycorrhiza, and rhizobia) and phylogenetic groups (broad-leaved angiosperms and coniferous gymnosperms) from the cool temperate forests of Nagano, Japan. We measured root architectural (branching intensity), morphological (root tissue density and specific root length), chemical (N and K concentrations), and anatomical (total stele and total cortex) traits. Significant differences were observed in all root traits, although many species did not differ from one another. Branching intensity was found to be the greatest variation in the measured root traits across the 11 woody species. The results of a principal component analysis of root traits showed a distinct separation between angiosperms and gymnosperms. We identified clusters of species based on their multidimensional root traits that were consistent with the different phylogenetic microbial association groups. Gymnosperm roots may be more resource conservative, while angiosperm roots may be more acquisitive for water and nutrients. We consider that the advances in root traits combination will make a breakthrough in our ability to differentiate the community groups rather than individual root trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R, Chapin IIIFS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and pattern. Ecol Res 30:1–67

    Google Scholar 

  • Assefa D, Godbold DL, Belay B, Abiyu A, Rewald B (2018) Fine root morphology, biochemistry and litter quality indices of fast- and slow-growing woody species in Ethiopian highland forest. Ecosystems 21:482–494. https://doi.org/10.1007/s10021-017-0163-7

    Article  CAS  Google Scholar 

  • Bardgett RD, Van Der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511. https://doi.org/10.1038/nature13855

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699. https://doi.org/10.1016/j.tree.2014.10.006

    Article  PubMed  Google Scholar 

  • Burton AJ, Jarvey JC, Jarvi MP, Zak DR, Pregizer KS (2012) Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests. Glob Change Biol 18:258–266. https://doi.org/10.1111/j.1365-2486.2011.02527.x

    Article  Google Scholar 

  • Clemmesen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1619

    Article  Google Scholar 

  • Comas LH, Eissenstat DM (2004) Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct Ecol 18:388–397

    Article  Google Scholar 

  • Comas LH, Eissenstat DM (2009) Patterns in root trait variation among 25 co-existing North American forest species. New Phytol 182:919–928. https://doi.org/10.1111/j.1469-8137.2009.02799.x

    Article  CAS  PubMed  Google Scholar 

  • Comas LH, Mueller KE, Taylor LL, Midford PE, Callahan HS, Beerling DJ (2012) Evolutionary patterns and biogeochemical significance of angiosperm root traits. Int J Plant Sci 173:584–595. https://doi.org/10.1086/665823

    Article  Google Scholar 

  • Comas LH, Callahan HS, Midford PE (2014) Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies. Ecol Evol 4:2979–2990. https://doi.org/10.1002/ece3.1147

    Article  PubMed  PubMed Central  Google Scholar 

  • de Kroon H, Visser EJW (2003) Root ecology. Springer, Berlin

    Book  Google Scholar 

  • Development Core Team R (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:6–7

    Article  Google Scholar 

  • Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New York, pp 215–255

    Google Scholar 

  • Fitter AH (1991) The ecological significance of root system architecture: an economic approach. In: Atkinson D (ed) Plant and root growth: an ecological perspective. Blackwell Science, London, pp 229–243

    Google Scholar 

  • Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC (2013) Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide. J Ecol 101:943–952. https://doi.org/10.1111/1365-2745.12092

    Article  CAS  Google Scholar 

  • Guo D, Xia M, Wei X, Chang W, Liu Y, Wang Z (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180:673–683. https://doi.org/10.1111/j.1469-8137.2008.02573.x

    Article  PubMed  Google Scholar 

  • Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363. https://doi.org/10.1016/j.tree.2015.03.015

    Article  PubMed  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. https://doi.org/10.1111/j.1469-8137.2004.01015.x

    Article  Google Scholar 

  • Iversen CM (2010) Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol 186:346–357

    Article  Google Scholar 

  • Johnson SN, Benefer CM, Frew A, Griffiths BS, Hartley SE, Karley AJ, Rasmann S, Schumann M, Sonnemann I, Robert CAM (2016) New frontiers in belowground ecology for plant protection from root-feeding insects. Soil Ecol 108:96–107

    Article  Google Scholar 

  • Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D (2014) Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol 203:863–872. https://doi.org/10.1111/nph.12842

    Article  PubMed  Google Scholar 

  • Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC (2016) Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J Ecol 104:1299–1310. https://doi.org/10.1111/1365-2745.12562

    Article  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Liese R, Alings K, Meier IC (2017) Root branching is a leading root trait of the plant economics spectrum in temperate trees. Front Plant Sci 8:1–12. https://doi.org/10.3389/fpls.2017.00315

    Article  Google Scholar 

  • Lux A, Luxová M, Abe J, Morita S (2004) Root cortex: structural and functional variability and responses to environmental stress. Root Res 13:117–131

    Article  Google Scholar 

  • Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018) Evolutionary history resolves global organization of root functional traits. Nature 555:94–97. https://doi.org/10.1038/nature25783

    Article  CAS  PubMed  Google Scholar 

  • Makita N, Hirano Y, Mizoguchi T, Kominami Y, Dannoura M, Ishii H, Finér L, Kanazawa Y (2011) Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecol Res 26:95–104. https://doi.org/10.1007/s11284-010-0764-5

    Article  Google Scholar 

  • Makita N, Hirano Y, Sugimoto T, Tanikawa T, Ishii H (2015) Intraspecific variation in fine root respiration and morphology in response to in situ soil nitrogen fertility in a 100-year-old Chamaecyparis obtusa forest. Oecologia 179:959–967. https://doi.org/10.1007/s00442-015-3413-4

    Article  PubMed  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518. https://doi.org/10.1111/nph.13363

    Article  PubMed  Google Scholar 

  • McCormack ML, Guo D, Iversen CM, Chen W, Eissenstat DM, Fernandez CW, Li L, Ma C, Ma Z, Poorter H, Reich PB, Zadworny M, Zanne A (2017) Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. New Phytol 215:27–37. https://doi.org/10.1111/nph.14459

    Article  PubMed  Google Scholar 

  • Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M (2017) Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol 214:1447–1463. https://doi.org/10.1111/nph.14496

    Article  CAS  PubMed  Google Scholar 

  • Ostonen I, Lohmus K (2003) Proportion of fungal mantle, cortex and stele of ectomycorrhizas in Picea abies (L.) Karst. In different soils and site conditions. Plant Soil 257:435–442

    Article  CAS  Google Scholar 

  • Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670

    Article  Google Scholar 

  • Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • Reich PB (2014) The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301. https://doi.org/10.1111/1365-2745.12211

    Article  Google Scholar 

  • Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao K, Stokes A (2016) Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–826. https://doi.org/10.1111/nph.13828

    Article  PubMed  Google Scholar 

  • Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996) Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol 16:333–343

    Article  CAS  Google Scholar 

  • Saleem M, Law AD, Sahib MR, Pervaiz ZH, Zhang Q (2018) Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 6:47–51

    Article  Google Scholar 

  • Strand AE, Pritchard SG, McCormack ML, Davis MA, Oren R (2008) Irreconcilable differences: fine-root life spans and soil carbon persistence. Science 319:456–458. https://doi.org/10.1126/science.1151382

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology. Mineral nutrition, 3rd edn. Sinauer Associates Inc, Sunderland, pp 67–86

    Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016) Towards a multidimensional root trait framework: a tree root review. New Phytol 211:1159–1169. https://doi.org/10.1111/nph.14003

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827. https://doi.org/10.1038/nature02403

    Article  CAS  PubMed  Google Scholar 

  • Yanai RD, McFarlane KJ, Lucash MS, Kulpa SE, Wood DM (2009) Similarity of nutrient uptake and root dimensions of Engelmann spruce and subalpine fir at two contrasting sites in Colorado. For Ecol Manag 258:2233–2241. https://doi.org/10.1016/j.foreco.2009.04.035

    Article  Google Scholar 

  • Zadworny M, McCormack ML, Mucha J, Reich P, Oleksyn J (2016) Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient. New Phytol 212:389–399

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledged Ms. H Umezu, Ms. K Nakazawa, Ms. J Wang, Dr. H Kobayashi, Dr. T Kunito and Dr. H Park of Shinshu University for helpful support in field and laboratory experiments. We also thank two reviewers for their constructive comments and suggestions for the manuscript.

Funding

This study was partially funded by Grant-in Aid for Japan Society for the Promotion of Science fellows (15K18719, 18K14488) and by the Fujiwara Natural History Foundation.

Author information

Authors and Affiliations

Authors

Contributions

HY and NM conceived and designed the experiments. HY, NT, MO and NM performed the experiments and analyzed the data. HY and NM wrote the manuscript and other authors provided editorial advice.

Corresponding author

Correspondence to Naoki Makita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Susana Rodriguez Echeverria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 311 kb)

Supplementary material 2 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahara, H., Tanikawa, N., Okamoto, M. et al. Characterizing fine-root traits by species phylogeny and microbial symbiosis in 11 co-existing woody species. Oecologia 191, 983–993 (2019). https://doi.org/10.1007/s00442-019-04546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-019-04546-2

Keywords

Navigation