Skip to main content
Log in

Introducing a New Model of Sweet Taste Receptor, a Class C G-protein Coupled Receptor (C GPCR)

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The structure of sweet taste receptor (STR), a heterodimer of class C G-protein coupled receptors comprising T1R2 and T1R3 molecules, is still undetermined. In this study, a new enhanced model of the receptor is introduced based on the most recent templates. The improvement, stability, and reliability of the model are discussed in details. Each domain of the protein, i.e., VFTM, CR, and TMD, were separately constructed by hybrid-model construction methods and then assembled to build whole monomers. Overall, 680 ns molecular dynamics simulation was performed for the individual domains, the whole monomers and the heterodimer form of the VFTM orthosteric binding site. The latter’s structure obtained from 200 ns simulation was docked with aspartame; among various binding sites suggested by FTMAP server, the experimentally suggested binding domain in T1R2 was retrieved. Local three-dimensional structures and helices spans were evaluated and showed acceptable accordance with the template structures and secondary structure predictions. Individual domains and whole monomer structures were found stable and reliable to be used. In conclusion, several validations have shown reliability of the new and enhanced models for further molecular modeling studies on structure and function of STR and C GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability and Materials

The datasets generated or analyzed during the current study are not publicly available due to data privacy reasons but are available from the corresponding author on reasonable request.

Abbreviations

STR:

Human sweet taste receptor

C GPCR:

Class C of G-protein coupled receptors

7TM:

Seven transmembrane α-helices

VFTM:

Venus flytrap domain or module

CR:

Cysteine-rich domain

TMD:

Transmembrane domain

mGluR1:

Metabotropic glutamate receptor subtype 1

MD:

Molecular dynamics

N-model:

The new model introduced in the current study

R-model:

The most recent model presented

I-model:

Model represented by I-TASSER or GPCR-I-TASSER

SS:

Secondary structure

ns:

Nanoseconds

PME:

Particle mesh Ewald

RMSD:

Root mean square deviation

CA:

Carbon-alpha

SD:

Standard deviation

SDR:

Standard deviation ratio

References

  1. Nelson, G., Hoon, M. A., Chandrashekar, J., Zhang, Y., Ryba, N. J., & Zuker, C. S. (2001). Mammalian sweet taste receptors. Cell, 106(3), 381–390.

    Article  CAS  PubMed  Google Scholar 

  2. Li, X., Staszewski, L., Xu, H., Durick, K., Zoller, M., & Adler, E. (2002). Human receptors for sweet and umami taste. Proceedings of the National Academy of Sciences, 99(7), 4692–4696. https://doi.org/10.1073/pnas.072090199.

    Article  CAS  Google Scholar 

  3. Behrens, M., & Meyerhof, W. (2011). Gustatory and extragustatory functions of mammalian taste receptors. Physiology and Behavior, 105(1), 4–13. https://doi.org/10.1016/j.physbeh.2011.02.010.

    Article  CAS  PubMed  Google Scholar 

  4. Laffitte, A., Neiers, F., & Briand, L. (2014). Functional roles of the sweet taste receptor in oral and extraoral tissues. Current Opinion in Clinical Nutrition and Metabolic Care, 17(4), 379–385. https://doi.org/10.1097/mco.0000000000000058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Venkatakrishnan, A. J., Deupi, X., Lebon, G., Tate, C. G., Schertler, G. F., & Babu, M. M. (2013). Molecular signatures of G-protein-coupled receptors. Nature, 494(7436), 185–194.

    Article  CAS  PubMed  Google Scholar 

  6. Pierce, K. L., Premont, R. T., & Lefkowitz, R. J. (2002). Seven-transmembrane receptors. Nature Reviews Molecular Cell Biology, 3(9), 639–650.

    Article  CAS  PubMed  Google Scholar 

  7. Muto, T., Tsuchiya, D., Morikawa, K., & Jingami, H. (2007). Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proceedings of the National Academy of Sciences, 104(10), 3759–3764.

    Article  CAS  Google Scholar 

  8. Kniazeff, J., Prézeau, L., Rondard, P., Pin, J.-P., & Goudet, C. (2011). Dimers and beyond: the functional puzzles of class C GPCRs. Pharmacology and Therapeutics, 130(1), 9–25. https://doi.org/10.1016/j.pharmthera.2011.01.006.

    Article  CAS  PubMed  Google Scholar 

  9. Congreve, M., Doré, A.S., Jazayeri, A., Nonoo, R. (2015). Engineering G protein-coupled receptors for drug design. In G. Scapin, D. Patel, E. Arnold (Eds), Multifaceted roles of crystallography in modern drug discovery. (pp 1–18). Netherlands: Springer. https://doi.org/10.1007/978-94-017-9719-1.

  10. Hillisch, A. (2004). Utility of homology models in the drug discovery process. Drug Discovery Today., 9, 659–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cui, M., Jiang, P., Maillet, E., Max, M., Margolskee, R. F., & Osman, R. (2006). The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Current Pharmaceutical Design, 12(35), 4591–4600. https://doi.org/10.2174/138161206779010350.

    Article  CAS  PubMed  Google Scholar 

  12. Xu, H., Staszewski, L., Tang, H., Adler, E., Zoller, M., & Li, X. (2004). Different functional roles of T1R subunits in the heteromeric taste receptors. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 14258–14263. https://doi.org/10.1073/pnas.0404384101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Servant, G., Tachdjian, C., Tang, X.-Q., Werner, S., Zhang, F., Li, X., Kamdar, P., Petrovic, G., Ditschun, T., Java, A., Brust, P., Brune, N., DuBois, G. E., Zoller, M., & Karanewsky, D. S. (2010). Positive allosteric modulators of the human sweet taste receptor enhance sweet taste. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4746–4751. https://doi.org/10.1073/pnas.0911670107.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim, S.-K., Chen, Y., Abrol, R., Goddard, W. A., & Guthrie, B. (2017). Activation mechanism of the G protein-coupled sweet receptor heterodimer with sweeteners and allosteric agonists. Proceedings of the National Academy of Sciences, 114(10), 2568–2573. https://doi.org/10.1073/pnas.1700001114.

    Article  CAS  Google Scholar 

  15. Jiang, P. H., Cui, M., Zhao, B. H., Snyder, L. A., Benard, L. M. J., Osman, R., Max, M., & Margolskee, R. F. (2005). Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. Journal of Biological Chemistry, 280(40), 34296–34305. https://doi.org/10.1074/jbc.M505255200.

    Article  CAS  Google Scholar 

  16. Jiang, P., Cui, M., Zhao, B., Liu, Z., Snyder, L. A., Benard, L. M., Osman, R., Margolskee, R. F., & Max, M. (2005). Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. The Journal of Biological Chemistry, 280(15), 15238–15246. https://doi.org/10.1074/jbc.M414287200.

    Article  CAS  PubMed  Google Scholar 

  17. Winnig, M., Bufe, B., Kratochwil, N. A., Slack, J. P., & Meyerhof, W. (2007). The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor. BMC Structural Biology, 7, 66 https://doi.org/10.1186/1472-6807-7-66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, F., Klebansky, B., Fine, R. M., Liu, H., Xu, H., Servant, G., Zoller, M., Tachdjian, C., & Li, X. (2010). Molecular mechanism of the sweet taste enhancers. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4752–4757. https://doi.org/10.1073/pnas.0911660107.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Assadi-Porter, F. M., Maillet, E. L., Radek, J. T., Quijada, J., Markley, J. L., & Max, M. (2010). Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor. Journal of Molecular Biology, 398(4), 584–599. https://doi.org/10.1016/j.jmb.2010.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masuda, K., Koizumi, A., Nakajima K-i, Tanaka, T., Abe, K., Misaka, T., & Ishiguro, M. (2012). Characterization of the modes of binding between human sweet taste receptor and low-molecular-weight sweet compounds. PLoS ONE, 7(4), e35380 https://doi.org/10.1371/journal.pone.0035380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maillet, E. L., Cui, M., Jiang, P., Mezei, M., Hecht, E., Quijada, J., Margolskee, R. F., Osman, R., & Max, M. (2015). Characterization of the binding site of aspartame in the human sweet taste receptor. Chemical Senses, 40(8), 577–586. https://doi.org/10.1093/chemse/bjv045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mayank, JaitakV. (2015). Interaction model of steviol glycosides from Stevia rebaudiana (Bertoni) with sweet taste receptors: a computational approach. Phytochemistry, 116(1), 12–20. https://doi.org/10.1016/j.phytochem.2015.05.006.

    Article  CAS  PubMed  Google Scholar 

  23. Shrivastav, A., & Srivastava, S. (2013). Human sweet taste receptor: complete structure prediction and evaluation. International Journal of Chemical and Analytical Science, 4(1), 24–32.

    Article  CAS  Google Scholar 

  24. Yousif, R.H., & Khairudin, N.B.A. (2014). Homology modeling of human sweet taste receptors: T1R2-T1R3. Journal of Medical and Bioengineering, 3(2), 84–86.

    Article  Google Scholar 

  25. Chéron, J.-B., Golebiowski, J., Antonczak, S., & Fiorucci, S. (2017). The anatomy of mammalian sweet taste receptors. Proteins: Structure, Function, and Bioinformatics, 85(2), 332–341. https://doi.org/10.1002/prot.25228.

    Article  CAS  Google Scholar 

  26. Nuemket, N., Yasui, N., Kusakabe, Y., Nomura, Y., Atsumi, N., Akiyama, S., Nango, E., Kato, Y., Kaneko, M. K., Takagi, J., Hosotani, M., & Yamashita, A. (2017). Structural basis for perception of diverse chemical substances by T1r taste receptors. Nature Communications, 8, 15530 https://doi.org/10.1038/ncomms15530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Geng, Y., Mosyak, L., Kurinov, I., Zuo, H., Sturchler, E., Cheng, T. C., Subramanyam, P., Brown, A. P., Brennan, S. C., Mun H-c, Bush, M., Chen, Y., Nguyen, T. X., Cao, B., Chang, D. D., Quick, M., Conigrave, A. D., Colecraft, H. M., McDonald, P., & Fan, Q. R. (2016). Structural mechanism of ligand activation in human calcium-sensing receptor. eLife, 5, e13662 https://doi.org/10.7554/eLife.13662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Consortium, T. U. (2017). UniProt: the universal protein knowledgebase. Nucleic Acids Research, 45(D1), D158–D169. https://doi.org/10.1093/nar/gkw1099.

    Article  CAS  Google Scholar 

  29. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25. https://doi.org/10.1093/nar/25.17.3389

  30. Krieger, E., & Vriend, G. (2014). YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics, 30(20), 2981–2982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291.

    Article  CAS  Google Scholar 

  32. Hooft, R. W., Vriend, G., Sander, C., & Abola, E. E. (1996). Errors in protein structures. Nature, 381(6580), 272.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1), 1–8. https://doi.org/10.1186/1471-2105-9-40.

    Article  CAS  Google Scholar 

  34. Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, J., Yang, J., Jang, R., & Zhang, Y. (2015). GPCR-I-TASSER: a hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. Structure, 23(8), 1538–1549. https://doi.org/10.1016/j.str.2015.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shahlaei, M., & Mousavi, A. (2014). A 3D model for human melanocortin 4 receptor refined with molecular dynamics simulation. Journal of Reports in Pharmaceutical Sciences, 3(1), 42–53.

    CAS  Google Scholar 

  37. Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292(2), 195–202.

    Article  CAS  PubMed  Google Scholar 

  38. Drozdetskiy, A., Cole, C., Procter, J., & Barton, G. J. (2015). JPred4: a protein secondary structure prediction server. Nucleic Acids Research, 43(W1), W389–W394. https://doi.org/10.1093/nar/gkv332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geourjon, C., & Deléage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681.

    Article  CAS  PubMed  Google Scholar 

  40. Mirabello, C., & Pollastri, G. (2013). Porter, PaleAle 4.0: high-accuracy prediction of protein secondary structure and relative solvent accessibility. Bioinformatics, 29(16), 2056–2058.

    Article  CAS  PubMed  Google Scholar 

  41. Kashani-Amin, E., Tabatabaei-Malazy, O., Sakhteman, A., Larijani, B., Ebrahim-Habibi, A. (2018) A systematic review on popularity, application and characteristics of protein secondary structure prediction tools. Current Drug Discovery Technologies, 15. https://doi.org/10.2174/1570163815666180227162157

  42. Leman, J. K., Mueller, R., Karakas, M., Woetzel, N., & Meiler, J. (2013). Simultaneous prediction of protein secondary structure and transmembrane spans. Proteins: Structure, Function, and Bioinformatics, 81(7), 1127–1140. https://doi.org/10.1002/prot.24258.

    Article  CAS  Google Scholar 

  43. Viklund, H., & Elofsson, A. (2008). OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics, 24(15), 1662–1668.

    Article  CAS  PubMed  Google Scholar 

  44. Sonnhammer E.L., Von Heijne G., Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. In: Ismb, 1998. pp 175-182

  45. Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., & Karplus, K. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins, 77(Suppl 9), 114–122. https://doi.org/10.1002/prot.22570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Konagurthu, A. S., Whisstock, J. C., Stuckey, P. J., & Lesk, A. M. (2006). MUSTANG: a multiple structural alignment algorithm. Proteins: Structure, Function, and Bioinformatics, 64(3), 559–574.

    Article  CAS  Google Scholar 

  47. Krieger, E., & Vriend, G. (2015). New ways to boost molecular dynamics simulations. Journal of Computational Chemistry, 36(13), 996–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593.

    Article  CAS  Google Scholar 

  49. Krieger, E., Nielsen, J. E., Spronk, C. A., & Vriend, G. (2006). Fast empirical pK a prediction by Ewald summation. Journal of Molecular Graphics and Modelling, 25(4), 481–486.

    Article  CAS  PubMed  Google Scholar 

  50. Krieger, E., Darden, T., Nabuurs, S. B., Finkelstein, A., & Vriend, G. (2004). Making optimal use of empirical energy functions: force‐field parameterization in crystal space. Proteins: Structure, Function, and Bioinformatics, 57(4), 678–683.

    Article  CAS  Google Scholar 

  51. Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., & Lee, T. (2003). A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012.

    Article  CAS  PubMed  Google Scholar 

  53. Brenke, R., Kozakov, D., Chuang, G.-Y., Beglov, D., Hall, D., Landon, M. R., Mattos, C., & Vajda, S. (2009). Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics, 25(5), 621–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kozakov, D., Hall, D. R., Chuang, G.-Y., Cencic, R., Brenke, R., Grove, L. E., Beglov, D., Pelletier, J., Whitty, A., & Vajda, S. (2011). Structural conservation of druggable hot spots in protein–protein interfaces. Proceedings of the National Academy of Sciences, 108(33), 13528–13533.

    Article  CAS  Google Scholar 

  55. Ngan, C.H., Bohnuud, T., Mottarella, S.E., Beglov, D., Villar, E.A., Hall, D.R., Kozakov, D., Vajda, S. (2012) FTMAP: extended protein mapping with user-selected probe molecules. Nucleic Acids Research, 40,(Web Server issue):W271–W275. https://doi.org/10.1093/nar/gks441

  56. Kozakov, D., Grove, L. E., Hall, D. R., Bohnuud, T., Mottarella, S. E., Luo, L., Xia, B., Beglov, D., & Vajda, S. (2015). The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols, 10(5), 733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu, H., Wang, C., Gregory, K. J., Han, G. W., Cho, H. P., Xia, Y., Niswender, C. M., Katritch, V., Meiler, J., & Cherezov, V. (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 344(6179), 58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Non-Communicable Diseases Research Center of Endocrinology and Metabolism Population Sciences Institute and Dr. Latifeh Navidpour for allocating computational resources to help this project.

Funding

This research has been supported by the Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences.

Author Contributions

This report contains part of the results obtained from E.K.-A. Ph.D. thesis project who has done model constructions, validations, calculations and analyses, and written the manuscript text draft. A.E-H. was supervisor of the thesis, developed the initial idea and supervised the research project from data gathering to critical paper review. A.S. was advisor of the thesis and has done technical supervision of the model construction, validation, and analyses and critical paper review. B.L. was advisor of the thesis and has contributed in the idea developing and supervising project progress as an endocrine and metabolism research study. All authors have reviewed the final script and commented if necessary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Ebrahim-Habibi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashani-Amin, E., Sakhteman, A., Larijani, B. et al. Introducing a New Model of Sweet Taste Receptor, a Class C G-protein Coupled Receptor (C GPCR). Cell Biochem Biophys 77, 227–243 (2019). https://doi.org/10.1007/s12013-019-00872-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-019-00872-7

Keywords

Navigation