Skip to main content
Log in

Expression, Folding, and Activation of Halophilic Alkaline Phosphatase in Non-Halophilic Brevibacillus choshinensis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Halophilic enzymes contain a large number of acidic amino acids and marginal large hydrophobic amino acids, which make them highly soluble even under strongly hydrophobic conditions. This characteristic of halophilic enzymes provides potential for their industrial application. However, halophilic enzymes easily degrade when used for industrial applications compared with enzymes from other extremophiles because of their instability in low-salt environments. We aimed to clarify the stabilization mechanism of halophilic enzymes. We previously attempted to express halophilic alkaline phosphatase from Halomonas (HaALP) in non-halophilic E. coli. However, the expressed HaALP showed little activity. Therefore, we overexpressed HaALP in Gram-positive non-halophilic Brevibacillus choshinensis in this study, which was successfully expressed and purified in its active form. HaALP was denatured in 6 M urea, refolded using various salts and the non-ionic osmolyte trimethylamine N-oxide (TMAO), and assessed by native polyacrylamide gel electrophoresis. HaALP refolded in 3 M NaCl or 3 M TMAO containing Na+ ions. Hydrophobic interactions due to a high salt concentration or TMAO enhanced the formation of the folding intermediate (the monomer precursor), and only Na+ ions activated the dimer form. This insight into the stabilization mechanism of HaALP may lead to the development of industrial applications of halophilic enzymes under low-salt conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kamekura M, Hamakawa T, Onishi H (1982) Application of halophilic nuclease H of Micrococcus varians subsp. Halophilus to commercial production of flavoring agent 5-GMP. Appl Environ Microbiol 44:994–995

    Article  CAS  Google Scholar 

  2. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  CAS  Google Scholar 

  3. Litchfield CD (2011) Potential for industrial products from the halophilic archaea. J Ind Microbiol Biotechnol 38:1635–1647

    Article  CAS  Google Scholar 

  4. Arakawa T, Tokunaga H, Ishibashi M, Tokunaga M (2012) Halophilic properties and their manipulation and application. In: Singh OV (ed) Extremophiles: sustainable resources and biotechnological implications. Wiley, Hoboken, pp 95–121

    Chapter  Google Scholar 

  5. Ishibashi M, Kazuki O, Arakawa T, Tokunaga M (2011) Cloning, expression, purification and activation by Na ion of halophilic alkaline phosphatase from moderate halophile Halomonas sp. 593. Protein Expr Purif 76:97–102

    Article  CAS  Google Scholar 

  6. Ishibashi M, Yamashita S, Tokunaga M (2005) Characterization of halophilic alkaline phosphatase from Halomonas sp. 593, a moderately halophilic bacterium. Biosci Biotechnol Biochem 69:1213–1216

    Article  CAS  Google Scholar 

  7. Coleman JE (1992) Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct 21:441–483

    Article  CAS  Google Scholar 

  8. Akiyama Y, Ito K (1993) Folding and assembly of bacterial alkaline phosphatase in vivo and in vitro. J Biol Chem 15:8146–8150

    Google Scholar 

  9. Stec B, Holtz KM, Kantrowitz ER (2000) A revised mechanism for the alkaline phosphatase reaction involving three metal ions. J Mol Biol 299:1303–1311

    Article  CAS  Google Scholar 

  10. Boulanger RR Jr, Kantrowitz ER (2003) Characterization of a monomeric Escherichia coli alkaline phosphatase formed upon a single amino acid substitution. J Biol Chem 278:23497–23501

    Article  CAS  Google Scholar 

  11. Fitt PS, Baddoo P (1979) Separation and purification of the alkaline phosphatase and a phosphodiesterase from Halobacterium cutirubrum. Biochem J 181:347–353

    Article  CAS  Google Scholar 

  12. Goldman S, Hecht K, Eisenberg H, Mevarech M (1990) Extracellular Ca2+-dependent inducible alkaline phosphatase from extremely halophilic archaebacterium Haloarcula marismortui. J Bacteriol 172:7065–7070

    Article  CAS  Google Scholar 

  13. Bonet ML, Llorca FI, Cadenas E (1994) Kinetic mechanism of Halobacterium halobium Mn2+-activated alkaline phosphatase. Biochem Mol Biol Int 34:1109–1120

    CAS  PubMed  Google Scholar 

  14. Marhuenda-Egea FC, Piera-Velazquez S, Cadenas C, Cadenas E (2002) Mechanism of adaptation of an atypical alkaline p-nitrophenyl phosphatase from the archaeon Halobacterium salinarum at low-water environments. Biotechnol Bioeng 78:497–502

    Article  CAS  Google Scholar 

  15. Wende A, Johansson P, Vollrath R, Dyall-Smith M, Oesterhelt D, Grininger M (2010) Structural and biochemical characterization of a halophilic archaeal alkaline phosphatase. J Mol Biol 400:52–62

    Article  CAS  Google Scholar 

  16. Hayashi M, Unemoto T, Hayashi M (1973) pH- and anion-dependent salt modifications of alkaline phosphatase from a slightly halophilic Vibrio alginolyticus. Biochim Biophys Acta 315:83–93

    Article  CAS  Google Scholar 

  17. Roy NK, Ghosh RK, Das J (1982) Monomeric alkaline phosphatase of Vibrio cholerae. J Bacteriol 150:1033–1039

    Article  CAS  Google Scholar 

  18. Asgeirsson B, Andresso OS (2001) Primary structure of cold-adapted alkaline phosphatase from a Vibrio sp. as deduced from the nucleotide gene sequence. Biochim Biophys Acta 1549:99–111

    Article  CAS  Google Scholar 

  19. Arai S, Yonezawa Y, Ishibashi M, Matsumoto F, Adachi M, Tamada T, Tokunaga H, Blaber M, Tokunaga M, Kuroki R (2014) Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593. Acta Crystallogr D Biol Crystallogr 70:811–820

    Article  CAS  Google Scholar 

  20. Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 317–368

    Google Scholar 

  21. Kushner DJ (1985) The Halobacteriaceae. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8. Academic Press, Orlando, pp 171–214

    Google Scholar 

  22. Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9:R70

    Article  Google Scholar 

  24. Ebel C, Faou P, Kernel B, Zaccai G (1999) Relative role of anions and cations in the stabilization of halophilic malate dehydrogenase. Biochemistry 38:9039–9047

    Article  CAS  Google Scholar 

  25. Ebel C, Costenaro L, Pascu M, Faou P, Kernel B, Proust-De Martin F, Zaccai G (2002) Solvent interactions of halophilic malate dehydrogenase. Biochemistry 41:13234–13244

    Article  CAS  Google Scholar 

  26. Madern D, Ebel C (2007) Influence of an anion-binding site in the stabilization of halophilic malate dehydrogenase from Haloarcula marismortui. Biochimie 89:981–987

    Article  CAS  Google Scholar 

  27. Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47:411–414

    Article  CAS  Google Scholar 

  28. Mizukami M, Tokunaga H, Onishi H, Ueno Y, Hanagata H, Miyazaki N, Kiyose N, Ito Y, Ishibashi M, Hagihara Y, Arakawa T, Miyauchi A, Tokunaga M (2015) Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Protein Expr Purif 105:23–32

    Article  CAS  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  30. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  31. Mizukami M, Hanagata H, Miyauchi A (2010) Brevibacillus expression system: host-vector system for efficient production of secretory proteins. Curr Pharm Biotechnol 11:251–258

    Article  CAS  Google Scholar 

  32. Hanagata H, Mizukami M, Miyauchi A (2014) Efficient expression of antibody fragments with the Brevibacillus expression system. Antibodies 3:242–252

    Article  Google Scholar 

  33. Cendrin F, Chroboczek J, Zaccai G, Eisenberg H, Mevarech M (1993) Cloning, sequencing, and expression in Escherichia coli of the gene coding for malate dehydrogenase of the extremely halophilic archaebacterium Haloarcula marismortui. Biochemistry 32:4308–4313

    Article  CAS  Google Scholar 

  34. Pire C, Esclapez J, Ferrer J, Bonete MJ (2001) Heterologous overexpression of glucose dehydrogenase from the halophilic archaeon Haloferax mediterranei, an enzyme of the medium chain dehydrogenase/reductase family. FEMS Microbiol Lett 200:221–227

    Article  CAS  Google Scholar 

  35. Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  CAS  Google Scholar 

  36. Malende W, Horvath C (1977) Salt effect on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch Biochem Biophys 183:200–215

    Article  Google Scholar 

  37. Arakawa T, Timasheff SN (1982) Preferential interactions of proteins with salts in concentrated solutions. Biochemistry 21:6545–6552

    Article  CAS  Google Scholar 

  38. Liu Y, Bolen DW (1995) The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry 34:12884–12891

    Article  CAS  Google Scholar 

  39. Wang A, Bolen DW (1997) A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 36:9101–9108

    Article  CAS  Google Scholar 

  40. Haynes WM, Lide DR, Bruno TJ (2013) CRC handbook of chemistry and physics, 94th edn. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

We thank Atsushi Nishitani for technical assistance and Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matsujiro Ishibashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laksmi, F.A., Imamura, H., Tsurumaru, H. et al. Expression, Folding, and Activation of Halophilic Alkaline Phosphatase in Non-Halophilic Brevibacillus choshinensis. Protein J 39, 46–53 (2020). https://doi.org/10.1007/s10930-019-09874-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09874-z

Keywords

Navigation