Skip to main content
Log in

Assessment of absorbed dose of gamma rays using the simultaneous determination of inactive hemoglobin derivatives as a biological dosimeter

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Biological dosimetry based on sulfhemoglobin (SHb), methemoglobin (MetHb), and carboxyhemoglobin (HbCO) levels was evaluated. SHb, MetHb and HbCO levels were estimated in erythrocytes of mice irradiated by γ rays from a 60Co source using the method of multi-component spectrophotometric analysis developed recently. In this method, absorption measurements of diluted aqueous Hb-solution were made at λ = 500, 569, 577 and 620 nm, and using the mathematical formulas based on multi-component spectrophotometric analysis and the mathematical Gaussian elimination method for matrix calculation, the concentrations of various Hb-derivatives and total Hb in mice blood were estimated. The dose range of γ rays was from 0.5 to 8 Gy and the dose rate was 0.5 Gy min−1. Among all Hb-derivatives, MetHb, SHb and HbCO demonstrated an unambiguous dose-dependent response. For SHb and MetHb, the detection limits were about 0.5 Gy and 1 Gy, respectively. After irradiation, high levels of MetHb, SHb and HbCO persisted for at least 10 days, and the maximal increase of MetHb, SHb and HbCO occurred up to 24 h following γ irradiation. The use of this “MetHb + SHb + HbCO”-derivatives-based absorbed dose relationship showed a high accuracy. It is concluded that simultaneous determination of MetHb, SHb and HbCO, by multi-component spectrophotometry provides a quick, simple, sensitive, accurate, stable and inexpensive biological indicator for the early assessment of the absorbed dose in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abend M, Badie C, Quintens R, Kriehuber R, Manning G, Macaeva E, Nimja M, Oskamp D, Strunz S, Moertl S (2016) Examining radiation-induced in vivo and in vitro gene expression changes of the peripheral blood in different laboratories for biodosimetry purposes: first RENEB gene expression study. Radiat Res 185:109–123

    ADS  Google Scholar 

  • Adams V, Marley J, McCarroll C (2007) Prilocaine induced methaemoglobinaemia in a medically compromised patient. Was this an inevitable consequence of the dose administered? Br Dent J 203:585–587

    Google Scholar 

  • Ash-Bernal R, Wise R, Wright SM (2004) Acquired methemoglobinemia: a retrospective series of 138 cases at 2 teaching hospitals. Medicine (Baltimore) 83:265–273

    Google Scholar 

  • Bakkiam D, Bhavani M, Anantha Kumar AA, Sonwani S, Venkatachalam P, Sivasubramanian K, Venkatraman B (2015) Dicentric assay: inter-laboratory comparison in Indian laboratories for routine and triage applications. Appl Radiat Isot 99:77–85

    Google Scholar 

  • Bauchinger M (1995) Quantification of low-level radiation exposure by conventional chromosome aberration analysis. Mutat Res 339:177–189

    Google Scholar 

  • Beinke C, Barnard S, Boulay-Greene H, De Amicis A, De Sanctis S, Herodin F, Jones A, Kulka U, Lista F, Lloyd D, Martigne P, Moquet J, Oestreicher U, Romm H, Rothkamm K, Valente M, Meineke V, Braselmann H, Abend M (2013) Laboratory intercomparison of the dicentric chromosome analysis assay. Radiat Res 180(2):129–137

    ADS  Google Scholar 

  • Benderitter M, Vincent-Genod L, Pouget JP, Voisin P (2003) The cell membrane as a biosensor of oxidative stress induced by radiation exposure: a multiparameter investigation. Radiat Res 159(4):471–483

    ADS  Google Scholar 

  • Buha A, Vaseashta A, Bulat Z, Matović V (2013) Carboxyhemoglobin in blood of smokers and non-smokers determined by gas chromatography with thermal conductivity detector. Advanced Sensors for Safety and Security. Springer, Dordrecht, pp 163–171

    Google Scholar 

  • Burke P, Jahangir K, Kolber MR (2013) Dapsone-induced methemoglobinemia: case of the blue lady. Can Fam Phys 59(9):958–961

    Google Scholar 

  • Burlakova EB, Atkarskaia MV, Fatkullina LD, Andreev SG (2014) Radiation-induced changes in structural state of membranes of human blood cells. Radiatsionnaiabiol Radioecol 54(2):162–168

    Google Scholar 

  • Deperas-Kaminska M, Bajinskis A, Marczyk M, Polanska J, Wersall P, Lidbrink E, Ainsbury EA, Guipaud O, Benderitter M, Haghdoost S (2014) Radiation-induced changes in levels of selected proteins in peripheral blood serum of breast cancer patients as a potential triage biodosimeter for large-scale radiological emergencies, le radiological emergencies. Health Phys 107:555–563

    Google Scholar 

  • Depuydt J, Baeyens A, Barnard S, Beinke C, Benedek A, Beukes P, Buraczewska I, Darroudi F, De Sanctis S, Dominguez I, Gil MO, Hadjidekova V, Kis E, Kulka U, Lista F, Lumniczky K, Mkacher R, Moquet J, Obreja D, Oestreicher U, Pajic J, Pastor N, Popova L, Regalbuto E, Ricoul M, Sabatier L, Slabbert J, Sommer S, Testa A, Thierens H, Wojcik A, Vral A (2017) RENEB intercomparison exercises analyzing micronuclei (Cytokinesis-block Micronucleous Assay). Int J Radiat Biol 93(1):36–47

    Google Scholar 

  • Finielz P, Gendoo Z, Lataste A, Chuet C, Guiserix J (1992) Methemoglobinemia and intravascular hemolysis in a patient with G6PD deficiency. Nephron 62(2):242

    Google Scholar 

  • Flexman AM, Del Vicario G, Schwarz SK (2007) Dark green blood in the operating theatre. Lancet 369:1972

    Google Scholar 

  • Gerald CF (1978) Solving sets of equations. Applied numerical analysis, 2nd edn. Addison-Wesley publishing company, London, pp 78–80

    Google Scholar 

  • Gopalachar AS, Bowie VL, Bharadwaj P (2005) Phenazopyridine-induced sulfhemoglobinemia. Ann Pharmacother 39:1128–1130

    Google Scholar 

  • Grace MB, Mcleland CB, Blakely WF (2002) Real-time quantitative RT-PCR assay of GADD45 gene expression changes as a biomarker of radiation biodosimetry. Int J Radiat Biol 78:1011–1021

    Google Scholar 

  • Gregory BV, Xinhua J, Clara F, Gary LG (1998) Human carboxyhemoglobin at 2.2 Å resolution: structure and solvent comparisons of R-state, R2-state and T-state hemoglobins. Acta Crystallogr 54:355–366

    Google Scholar 

  • Hall EJ (1994) The physics and chemistry of radiation absorption. In: James DR, Kimberley C, Dina P (eds) Radiobiology for the radiologist, 4th edn. J.B. Lippincott company, Philadelphia, pp 1–13

    Google Scholar 

  • Hampson NB (2007) Carboxyhemoglobin elevation due to hemolytic anemia. J Emergency Medicine 33:17–19

    Google Scholar 

  • IAEA (1997) The use of plane parallel chambers in high-energy electron and photon beams: an international code of practice. Technical Report Series No. 381, International Atomic Energy Agency, Vienna

  • IAEA (2011) Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. International Atomic Energy Agency, Vienna, pp 1–229

    Google Scholar 

  • Ivashkevich A, Ohnesorg T, Sparbier CE, Elsaleh H (2017) Advances in biological dosimetry. J Phys Conf Ser 777:012012

    Google Scholar 

  • Jaffe ER, Neumann G (1964) A comparison of the effect of menadione, methylene blue and ascorbic acid on the reduction of methemoglobin in vivo. Nature 202:607–608

    ADS  Google Scholar 

  • Lacombe J, Sima C, Amundson SA, Zenhausern F (2018) Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: a systematic review. PLoS One 13(6):e0198851

    Google Scholar 

  • Li S, Lu X, Feng JB, Tian M, Wang J, Chen H, Chen DQ, Liu QJ (2019) Developing gender-specific gene expression biodosimetry using a panel of radiation-responsive genes for determining radiation dose in human peripheral blood. Radiat Res 192(4):399–409

    ADS  Google Scholar 

  • Lindholm C, Stricklin D, Jaworska A, Koivistoinen A, Paile W, Arvidsson E, Deperas-Standylo J, Wojcik A (2010) Premature chromosome condensation (PCC) assay for dose assessment in mass casualty accidents. Radiat Res 173:71–78

    ADS  Google Scholar 

  • Londhey V, Khadilkar K, Gad J, Chawla B, Asgaonkar D (2014) Congenital methemoglobinemia: a rare cause of cyanosis in an adult patient. J Assoc Phys India 62(3):269–271

    Google Scholar 

  • Lopez-Herce J, Borrego R, Bustinza A, Carrrillo A (2005) Elevated carboxyhemoglobin associated with sodium nitroprusside treatment. Intensive Care Med 31:1235–1238

    Google Scholar 

  • Manning G, Kabacik S, Finnon P, Bouffler S, Badie C (2013) High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int J Radiat Biol 89:512–522

    Google Scholar 

  • Manning G, Macaeva E, Majewski M, Kriehuber R, Brzóska K, Abend M, Doucha-Senf S, Oskamp D, Strunz S, Quintens R, Port M, Badie C (2017) Comparable dose estimates of blinded whole blood samples are obtained independently of culture conditions and analytical approaches. Second RENEB gene expression study. Int J Radiat Biol. 93(1):87–98

    Google Scholar 

  • Miller AC, Luo L, Chin WK, Director-Myska AE, Prasanna PGS, Blakely WF (2002) Protooncogene expression: a predictive assay for radiation biodosimetry applications. Radiat Prot Dosim 99:295–302

    Google Scholar 

  • Miller SM, Ferrarotto CL, Vlahovich S, Wilkins RC, Boreham DR, Dolling JA (2007) Canadian cytogenetic emergency network (CEN) for biological dosimetry following radiological/nuclear accidents. Int J Radiat Biol 83(7):471–477

    Google Scholar 

  • Ossetrova NI, Sandgren DJ, Gallego S, Blakely WF (2010) Combined approach of hematological biomarkers and plasma protein SAA for improvement of radiation dose assessment triage in biodosimetry applications. Health Phys 98:204–208

    Google Scholar 

  • Pinto MM, Santos NF, Amaral A (2010) Current status of biodosimetry based on standard cytogenetic methods. Radiat Environ Biophys 49:567–581

    Google Scholar 

  • Prasanna PGS, Muderhwa JM, Miller AC, Grace MB, Salter CA, Blakely WF (2004) Diagnostic biodosimetry response for radiation disasters: Current research and service activities at AFRRI. In: RTO-MP-HFM-108. RTOHFM, Proceedings of NATO medical surveillance and response, Research and Technology Opportunities and Options; Budapest, Hungary. Neuilly-sur-Seine Cedex: Research and Technology Organization (NATO)

  • Puchala M, Szweda-Lewandowska Z, Kiefer J (2004) The influence of radiation quality on radiation-induced hemolysis and hemoglobin oxidation of human erythrocytes. J Radiat Res 45(2):275–279

    Google Scholar 

  • Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM (2010) The use of gamma-H2AX as a biodosimeter for total-body radiation exposure in non-human primates. PLoS One 5:e15544

    ADS  Google Scholar 

  • Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM (2014) Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 21(2):260–292

    Google Scholar 

  • Repin M, Pampou S, Karan C, Brenner DJ, Garty G (2017) RABiT-II: implementation of a high-throughput micronucleus biodosimetry assay on commercial biotech robotic systems. Radiat Res 187(4):502–508

    ADS  Google Scholar 

  • Roth D, Hubmann N, Havel C, Herkner H, Schreiber W, Laggner A (2009) Victim of carbon monoxide poisoning identified by carbon monoxide oximetry. J Emerg Med 40:640–642

    Google Scholar 

  • Rothkamm K, Beinke C, Romm H, Badie C, Balagurunathan Y, Barnard S, Bernard N, Boulay-Greene H, Brengues M, De Amicis A, De Sanctis S, Greither R, Herodin F, Jones A, Kabacik S, Knie T, Kulka U, Lista F, Martigne P, Missel A, Moquet J, Oestreicher U, Peinnequin A, Poyot T, Roessler U, Scherthan H, Terbrueggen B, Thierens H, Valente M, Vral A, Zenhausern F, Meineke V, Braselmann H, Abend M (2013) Comparison of established and emerging biodosimetry assays. Radiat Res 180(2):111–119

    ADS  Google Scholar 

  • Sanpakit K, Veerakul G, Pongtanakul B, Viprakrasit V, Pung-ammritt P, Tanphaichitr V (2004) Hereditary methemoglobinemia due to cytochrome b5 reductase deficiency. Thai J Hematol Transf Med 14:281–287

    Google Scholar 

  • Selim NS (2010) Comparative study on the effect of radiation on whole blood and isolated red blood cells. Rom J Biophys 20(2):127–136

    Google Scholar 

  • Selim NS, Desouky OS, Ali SM, Ibrahim IH, Ashry HA (2009) Effect of gamma radiation on some biophysical properties of red blood cell membrane. Rom J Biophys 19(3):171–185

    Google Scholar 

  • Sonbol MB, Yadav H, Vaidya R, Rana V, Witzig TE (2013) Methemoglobinemia and hemolysis in a patient with G6PD deficiency treated with rasburicase. Am J Hematol 88(2):152–154

    Google Scholar 

  • Straley SJ (1994) Straley’s object oriented clipper programming, 1st edn. Random house electronic publishing, New York, pp 118–172

    Google Scholar 

  • Sullivan JM, Prasanna PG, Grace MB, Wathen LK, Wallace RL, Koerner JF, Coleman CN (2013) Assessment of biodosimetry methods for a mass-casualty radiological incident: medical response and management considerations. Health Phys 105:540–554

    Google Scholar 

  • Terzoudi GI, Pantelias G, Darroudi F, Barszczewska K, Buraczewska I, Depuydt J, Georgieva D, Hadjidekova V, Hatzi VI, Karachristou I, Karakosta M, Meschini R, M’Kacher R, Montoro A, Palitti F, Pantelias A, Pepe G, Ricoul M, Sabatier L, Sebastià N, Sommer S, Vral A, Zafiropoulos D, Wojcik A (2017) Dose assessment intercomparisons within the RENEB network using G0-lymphocyte prematurely condensed chromosomes (PCC assay). Int J Radiat Biol 93(1):48–57

    Google Scholar 

  • Thierens H, Vral A (2009) The micronucleus assay in radiation accidents. Ann Ist Super Sanita 45(3):260–264

    Google Scholar 

  • Van Kampen EJ, Zijlstra WG (1983) Spectrophotometry of hemoglobin and hemoglobin derivatives. Adv Clin Chem 23:200–257

    Google Scholar 

  • Vaurijoux A, Gruel G, Roch-Lefevre S, Voisin P (2012) Current topics in ionizing radiation research. In: Nenol M (ed) Biological dosimetry of ionizing radiation research. In Tech, Rijeka, pp 1–840

    Google Scholar 

  • Vral A, Frenech M, Thierens H (2011) The micronucleus assay as a biological dosimeter of in vivo ionizing radiation exposure. Mutagen 26:11–17

    Google Scholar 

  • Wall LJ, Wong LJ, Kinderknecht LK, Farrior CL, Gabbay DS (2016) Two cases of methemoglobinemia: in a military community hospital. Can Fam Phys 62(2):140–144

    Google Scholar 

  • WHO (2003) Laboratory biosafety manual, 2nd edn (revised). World Health Organization, Geneva, pp 22–24

    Google Scholar 

  • Wu C, Kenny MA (1997) A case of sulfhemoglobinemia and emergency measurement of sulfhemoglobin with an OSM3 CO-oximeter. Clin Chem 43(1):162–166

    Google Scholar 

  • Zahran F, Yousef AA, Baig MH (1982) A study of carboxyhaemoglobin levels of cigarette and sheesha smokers in Saudi Arabia. Am J Pub Health 72(7):722–724

    Google Scholar 

  • Zhang XH, Lou ZC, Wang AL, Hu XD, Zhang HQ (2013) New development of serum iron for biological dosimetry in mice. Radiat Res 179:684–689

    ADS  Google Scholar 

  • Zhang XH, Zhang YN, Min XY, Lou ZC, Wang AL, Hu XD, Zhang HQ (2015) Development of methemoglobin-based biological dosimetry in gamma-irradiated mice. Int J Radiat Res 13:235–241

    Google Scholar 

  • Zima GV, Dreval VI (2000) The effect of ionizing radiation in a wide dosage range on the structural –functional characteristics of the protein and lipid components of erythrocyte plasma membranes. Radiat Biol Radioecol 40(3):261–265

    Google Scholar 

  • Zosel A, Rychter K, Leikin JB (2007) Dapsone induced methemoglobinemia: case report and literature review. Am J Ther 14:585–587

    Google Scholar 

  • Zwart A, Buursma A, Van Kampen EJ, Zijlstra WG (1984) Multicomponent analysis of hemoglobin derivatives with a reversed optics spectrophotometer. Clin Chem 30:373–379

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Hassan.

Ethics declarations

Conflict of interest

The authors, who are responsible for content and writing of the manuscript, have no declared conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The millimolar concentrations of Hb-derivatives (SHb, MetHb, HbCO and HbO2) in diluted Hb-solution were calculated from the absorbance at 500, 569, 577 and 620 nm measured in the present study, and the millimolar absorbances determined previously (van Kampen and Zijlstra 1983). These millimolar absorbances were substituted into four linear equations (Eqs. 913) of the type described by the theory of multi-component spectrophotometric analysis, with the four unknown concentrations of Hb-derivatives (\(C_{{\rm HbO}_2}\)CHbO2, CHbCO, CMetHb and CSHb).

$$A_{500} = 7.2 C_{\text{SHb}} + 9.04 C_{\text{MetHb}} + 5.35 C_{\text{HbCO}} + 5.05 C_{{{\text{HbO}}_{ 2} }}$$
(9)
$$A_{569} = 8.1 C_{\text{SHb}} + 4.1 C_{\text{MetHb}} + 14.27 C_{\text{HbCO}} + 11.27 C_{{{\text{HbO}}_{ 2} }}$$
(10)
$$A_{577} = 8.1 C_{\text{SHb}} + 4.1 C_{\text{MetHb}} + 10 C_{\text{HbCO}} + 15.37 C_{{{\text{HbO}}_{ 2} }}$$
(11)
$$A_{620} = 20.8 C_{\text{SHb}} + 3.35 C_{\text{MetHb}} + 0.33 C_{\text{HbCO}} + 0.24 C_{{{\text{HbO}}_{ 2} }} ,$$
(12)

where, A500, A569, A577 and A620 are the absorbances at 500, 569, 577 and 620 nm, respectively. The absorption bands at these wavelengths represent the absorption maxima of MetHb, HbCO, HbO2 and SHb, respectively. The above linear system of equations can be represented in the matrix form as:

$$\left[ {\begin{array}{*{20}c} {5.05} & {5.35} & {9.04} & {7.2} \\ {11.27} & {14.27} & {4.1} & {8.1} \\ {15.37} & {10} & {4.1} & {8.1} \\ {0.24} & {0.33} & {3.35} & {20.8} \\ \end{array} } \right]*\left[ {\begin{array}{*{20}c} {C_{{{\text{HbO}}_{ 2} }} } \\ {C_{\text{HbCO}} } \\ {C_{\text{MetHb}} } \\ {C_{\text{SHb}} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {A_{500} } \\ {A_{569} } \\ {A_{577} } \\ {A_{620} } \\ \end{array} } \right].$$

This linear system of equations was solved using the Gaussian elimination method for matrix calculation (Gerald 1978), to yield the following equations (Eqs. 1316):

$$C_{\text{SHb}} = \left( {A_{620} - 0.4423 A_{500} + 0.1066 A_{569} + 0.0516 A_{577} } \right)/18.8963$$
(13)
$$C_{\text{MetHb}} = \left( {9.0602 A_{500} - 2.6960 A_{569} - A_{577} - 35.2959 C_{SHb} } \right)/66.7508$$
(14)
$$C_{\text{HbCO}} = (A_{569} - 2.2317 A_{500} + 16.0744 C_{\text{MetHb}} + 7.9681 C_{\text{SHb}} )/2.3305$$
(15)
$$C_{{{\text{HbO}}_{ 2} }} = \left( {A_{500} - 5.35 C_{\text{HbCO}} - 9.04 C_{\text{MetHb}} - 7.2 C_{\text{SHb}} } \right)/5.05,$$
(16)

where A500, A569, A577 and A620 are the corrected absorbances measured experimentally at wavelengths 500, 569, 577 and 620 nm, respectively, for a purified, extremely dilute aqueous Hb-solution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, A.M.M., Aboulthana, W.M., Hassan, G.M. et al. Assessment of absorbed dose of gamma rays using the simultaneous determination of inactive hemoglobin derivatives as a biological dosimeter. Radiat Environ Biophys 59, 131–144 (2020). https://doi.org/10.1007/s00411-019-00821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-019-00821-1

Keywords

Navigation