Skip to main content
Log in

Effects of bovine serum albumin (BSA) on the excited-state properties of meso-tetrakis(sulfonatophenyl) porphyrin (TPPS4)

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

To infer changes in the photophysical properties of porphyrins due to complexation with albumin, a combination of Z-scan and conventional spectroscopic techniques was employed. We measured the characteristics of excited states of meso-tetrakis(sulfonatophenyl) porphyrin bound to bovine serum albumin and observed that the binding reduces the intersystem crossing quantum yield and increases the internal conversion one. A reverse saturable absorption process was observed in the nanosecond timescale. These results are important for prediction of the efficiency of this complex in medical and optical applications, because associating porphyrins to proteins enables better accumulation in tumors and improves its stability in optical devices, but at the same time, decreases its triplet quantum yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade SM, Costa SMB (2002) Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins. Biophys J 82:1607–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balapanuru J, Yang J-X, Xiao S, Bao Q, Jahan M, Polavarapu L, Wei J, Xu Q-H, Loh KP (2010) A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chem Int Ed 49:6549–6553

    CAS  Google Scholar 

  • Barbosa Neto NM, Oliveira SL, Misoguti L, Mendonça CR, Gonçalves PJ, Borissevitch IE, Dinelli LR, Romualdo LL, Batista AA, Zilio SC (2006) Singlet excited state absorption of porphyrin molecules for pico- and femtosecond optical limiting application. J Appl Phys 99:123103

    Google Scholar 

  • Böcking T, Kilian KA, Reece PJ, Gaus K, Gal M, Gooding JJ (2010) Substrate independent assembly of optical structures guided by biomolecular interactions. ACS Appl Mater Interfaces 2(11):3270–3275

    PubMed  Google Scholar 

  • Bonnett R (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 1:19–38

    Google Scholar 

  • Borissevitch IE, Tominaga TT, Imasato H, Tabak M (1996) Fluorescence and optical absorption study of interaction of two water soluble porphyrins with bovine serum albumin. The role of albumin and porphyrin aggregation. J Lumin 69:65–76

    CAS  Google Scholar 

  • Borissevitch IE, Tominaga TT, Imasato H, Tabak M (1997) Resonance light scattering study of aggregation of two water soluble porphyrins due to their interaction with bovine serum albumin. Anal Chim Acta 343:281–286

    CAS  Google Scholar 

  • Borissevitch IE, Tominaga TT, Schmitt CC (1998) Photophysical studies on the interaction of two water soluble porphyrins with bowine serum albumin. Effects upon the porphyrin triplet state characteristics. J Photochem Phototobiol A 114:201–207

    CAS  Google Scholar 

  • Borissevitch IE, Rakov N, Maciel GS, de Araujo CB (2000) Changes of porphyrin non-linear absorption induced due to the interaction with bovine serum albumin. Appl Opt 39:4431–4435

    CAS  PubMed  Google Scholar 

  • Borissevitch IE, Lukashev EP, Oleinikov IP, Pavanelli ALS, Gonçalves PJ, Knox PP (2019) Electrostatic interactions and covalent binding effects on the energy transfer between quantum dots and reaction centers of purple bacteria. J Lumin 207:129–136

    CAS  Google Scholar 

  • Calvete M, Yang GY, Hanack M (2004) Porphyrins and phthalocyanines as materials for optical limiting. Synth Met 141:231–243

    CAS  Google Scholar 

  • Carvalho VCM, Melo CAS, Bagnato VS, Perussi JR (2002) Comparison of the effects of cationic and anionic porphyrins in tumor cells under illumination of Argon ion laser. Laser Phys 12:1314–1319

    CAS  Google Scholar 

  • De Boni L, Franzen PL, Gonçalves PJ, Borissevitch IE, Misoguti L, Mendonça CR, Zilio SC (2011) Pulse train fluorescence technique for measuring triplet state dynamics. Opt Express 19:10813–10823

    PubMed  Google Scholar 

  • De Boni L, Monteiro CJP, Mendonça CR, Zílio SC, Gonçalves PJ (2015) Influence of halogen atoms and protonation on the photophysical properties of sulfonated porphyrins. Chem Phys Lett 633:146–151

    Google Scholar 

  • Dennis MS, Jin H, Dugger D, Yang R, McFarland L, Ogasawara A, Williams S, Cole MJ, Ross S, Schwall R (2007) Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 67:254–261

    CAS  PubMed  Google Scholar 

  • Dini D, Calvete MJF, Hanack M (2016) Nonlinear optical materials for the smart filtering of optical radiation. Chem Rev 116:13043–13233

    CAS  PubMed  Google Scholar 

  • Dubbelman TMAR (1988) Porphyrin–protein interaction. In: Moreno G, Pottier RH, Truscott TG (eds) Photosensitisation. NATO ASI series (Series H: cell biology), vol 15. Springer, Berlin

    Google Scholar 

  • Gómez-Romero P, Sanchez C (eds) (2006) Functional hybrid materials. WILEY-VCH Verlag GmbH&Co.KGaA

  • Gonçalves PJ, Aggarwal LPF, Marquezin CA, Ito AS, De Boni L, Barbosa Neto NM, Rodrigues JJ Jr, Zilio SC, Borissevitch IE (2006) Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin. J Photochem Photobiol A 181:378–384

    Google Scholar 

  • Gonçalves PJ, Borissevitch IE, Zilio SC (2009) Effect of protonation on the singlet–singlet excited-state absorption of meso-tetrakis(p-sulphonatophenyl) porphyrin. Chem Phys Lett 469:270–273

    Google Scholar 

  • Gonçalves PJ, Barbosa Neto NM, Parra GG, De Boni L, Aggarwal LPF, Siqueira JP, Misoguti L, Borissevitch IE, Zílio SC (2012) Excited-state dynamics of meso-tetrakis(sulfonatophenyl) porphyrin J-aggregates. Opt Mater 34:741–747

    Google Scholar 

  • Grebenova D, Cajthamlova H, Holada K, Marinov J, Jirsa M, Hrkal Z (1997) Photodynamic effects of meso-tetra(4-sulfonatophenyl) porphine on human leukemia cells HEL and HL60, human lymphocytes and bone marrow progenitor cells. J Photochem Photobiol B 39:269–278

    CAS  PubMed  Google Scholar 

  • Josefsen LB, Boyle RW (2012) Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 9:916–966

    Google Scholar 

  • Kadish KM, Smith KM, Guilard R (2010) Handbook of porphyrin science: with applications to chemistry, physics, materials science, engineering, biology and medicine. World Scientific, Singapore

    Google Scholar 

  • Kostyukov AA, Nekipelova TD, Radchenko ASh, Golovina GV, Klimovich ON, Shtil AA, Codognato DCK, Gonçalves PJ, Pavanelli ALS, Ferreira LP, Amado AM, Borisevich YuE, Kuzmin VA (2017) Triplet states of the complexes of biscarbocyanine dye with albumin. High Energy Chem 2:148–150

    Google Scholar 

  • Kratz F, Beyer U (1998) Serum proteins as drug carriers of anticancer agents: a review. Drug Deliv 5:1–19

    Google Scholar 

  • Lakowicz JR (2013) Principles of fluorescence spectroscopy. Springer Science & Business Media, New York

    Google Scholar 

  • Lapes M, Petera J, Jirsa M (1996) Photodynamic therapy of cutaneous metastases of breast cancer after local application of meso-tetra-(para-sulphophenyl)-porphin (TPPS4). J Photochem Photobiol B 36:205–207

    CAS  PubMed  Google Scholar 

  • LaVan DA, Cha JN (2006) Approaches for biological and biomimetic energy conversion. PNAS 103(14):5251–5255

    CAS  PubMed  Google Scholar 

  • Lebedeva N, Malkova E, Syrbu S, Gubarev Y, Nikitin D (2013) Investigation of Interactions Between Cationic and Anionic Porphyrins and BSA in Aqueous Media. Int J Biochem Biophys 2(1):13–18

    Google Scholar 

  • Lehn J-M (1990) Supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew Chem 29:1304–1319

    Google Scholar 

  • Misoguti L, Mendonca CR, Zilio SC (1999) Characterization of dynamic optical nonlinearities with pulse trains. Appl Phys Lett 74:1531–1537

    CAS  Google Scholar 

  • Molina-Bolívar JA, Ortega-Vinuesa JL (1999) How proteins stabilize colloidal particles by means of hydration forces. Langmuir 15:2644–2653

    Google Scholar 

  • Morgan WT, Smith A, Koskelo P (1980) The interaction of human serum albumin and hemopexin with porphyrins. BBA Protein Struct 624(1):271–285

    CAS  Google Scholar 

  • Peters T Jr (1996) All about albumin, biochemistry, genetics, and medical applications. Academic Press, New York

    Google Scholar 

  • Pucelik B, Paczyński R, Dubin G, Pereira MM, Arnaut LG, Dąbrowski JM (2017) Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies. PLoS One 13:e0191777

    Google Scholar 

  • Rinco O, Brenton J, Douglas A, Maxwell A, Henderson M, Indrelie K, Wessels J, Widin J (2009) The effect of porphyrin structure on binding to human serum albumin by fluorescence spectroscopy. J Photochem Photobiol A 208(2–3):91–96

    CAS  Google Scholar 

  • Robinson GW, Frosch RP (1963) Electronic excitation transfer and relaxation. J Chem Phys 38(5):1187–1235

    CAS  Google Scholar 

  • Rodrigues SE, Machado AEH, Berardi M, Ito AS, Almeida LM, Santana MJ, Liao LM, Barbosa Neto NM, Gonçalves PJ (2015) Investigation of protonation effects on the electronic and structural properties of halogenated sulfonated porphyrins. J Mol Struct 1084:284–293

    CAS  Google Scholar 

  • Rozinek SC, Thomas RJ, Brancaleon L (2016) Biophysical characterization of the interaction of human albumin with an anionic porphyrin. Biochem Biophys Rep 7:295–302

    PubMed  PubMed Central  Google Scholar 

  • Sortino S (2012) Photoactivated nanomaterials for biomedical release applications. J Mater Chem 2:301–318

    Google Scholar 

  • Taratula O, Schumann C, Naleway MA, Pang AJ, Chon KJ, Taratula O (2013) A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol Pharm 10:3946–3958

    CAS  PubMed  Google Scholar 

  • Teles AV, Oliveira TMA, Bezerra FC, Alonso L, Alonso A, Borissevitch IE, Gonçalves PJ, Souza GRL (2018) Photodynamic inactivation of Bovine herpesvirus type 1 (BoHV-1) by porphyrins. J Gen Virol 99(9):1301–1306

    CAS  PubMed  Google Scholar 

  • Thanopulos I, Paspalakis E, Yannopapas V (2008) Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router. Nanotechnology 19:445202

    PubMed  Google Scholar 

  • Wendell DW, Patti J, Montemagno CD (2006) Using biological inspiration to engineer functional nanostructured materials. Small 2(11):1324–1329

    CAS  PubMed  Google Scholar 

  • Zarubaeva VV, Krisko TC, Kriukova EV, Muraviova TD (2017) Effect of albumin on the fluorescence quantum yield of porphyrin -based agents for fluorescent diagnostics. Photodiagn Photodyn Ther 20:137–143

    Google Scholar 

  • Zhang T, Zhoung Y, Wang Y, Zhang L, Wang H, Wu X (2014) Fabrication of hierarchical nanostructured BSA/ZnO hybrid nanoflowers by a self-assembly press. Mater Lett 128:227–230

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grant nos. 305303/2013-9, 309404/2015-0, 458436/2014-3 and 425124/2018-5), Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG Grant nos. 201410267001776 and 201710267000533) for this research financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo J. Gonçalves.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, P.J., Bezerra, F.C., Almeida, L.M. et al. Effects of bovine serum albumin (BSA) on the excited-state properties of meso-tetrakis(sulfonatophenyl) porphyrin (TPPS4) . Eur Biophys J 48, 721–729 (2019). https://doi.org/10.1007/s00249-019-01397-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01397-w

Keywords

Navigation