Skip to main content

Advertisement

Log in

Preliminary Findings on the Optimization of Visual Performance in Patients with Age-Related Macular Degeneration Using Biofeedback Training

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

Biofeedback training has been used to improve fixation stability in subjects with central vision loss, but the psychophysiological mechanisms underlying the functional improvements resulted was not reported. The aim of this study was to investigate the effects of microperimetric biofeedback training on different visual functions and self-reported quality of vision in subjects with age-related macular degeneration. This case-control study included six subjects (72.0 ± 6.1 years of age) diagnosed with age-related macular degeneration (wet or dry) with low vision (best corrected visual acuity ranging from 0.5 to 0.1 in the study eye) and five healthy volunteers (64.2 ± 3.7 years of age). Ophthalmological and functional examinations were obtained from all subjects twice with an approximately 3-month interval. Subjects with central vision loss performed 12 sessions (10 min each) of biofeedback training between the two examinations. Functional evaluation included: microperimetry, spatial luminance contrast sensitivities, color vision thresholds, visual acuity, and reading speed. Visual performance during daily activities was also assessed using a standardized questionnaire. The ratio (2nd/1st examination) of the spatial luminance contrast sensitivity at lower spatial frequencies were much higher for the training subjects compared with the controls. In addition, self-reported quality of vision improved after the training. The significant improvement of the visual function such as spatial luminance contrast sensitivity may explain the better self-reported quality of vision. Possible structural and physiological mechanisms underlying this neuromodulation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ambati, J., & Fowler, B. J. (2012). Mechanisms of age-related macular degeneration. Neuron, 75(1), 26–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amore, F. M., Paliotta, S., Silvestri, V., Piscopo, P., Turco, S., & Reibaldi, A. (2013). Biofeedback stimulation in patients with age-related macular degeneration: Comparison between 2 different methods. Canadian Journal of Ophthalmology, 48, 431–437.

    Article  PubMed  Google Scholar 

  • Bausz, M., & Németh, J. (2006). Change in the quality of life after cataract surgery [Hun]. In S. L. Biró Zs (Ed.), The newest results of cataract and refractive surgery [Hun]. Congress of the SHIOL 2005 (pp. 53–64). Pécs: Hungarian-Artificial Lens Implantation and Refractive Surgery Society.

    Google Scholar 

  • Brown, P. K., & Wald, G. (1964). Visual pigments in single rods and cones of human retina—direct measurements revels mechanisms of human night and color vision. Science, 144, 45–47.

    Article  PubMed  Google Scholar 

  • Cheung, S., & Legge, G. E. (2005). Functional and cortical adaptations to central vision loss. Visual Neuroscience, 22, 187–201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuang, E. L. (1987). Management of the ageing macula. Eye, 1, 311–317.

    Article  PubMed  Google Scholar 

  • Crossland, M. D., Culham, L. E., Kabanarou, S. A., & Rubin, G. S. (2005). Preferred retinal locus development in patients with macular disease. Ophthalmology, 112, 1579–1585.

    Article  PubMed  Google Scholar 

  • Crossland, M. D., Engel, S. A., & Legge, G. E. (2011). Preferred retinal locus in macular disease. Toward a consensus definition. Retina, 31, 2109–2114.

    Article  PubMed  Google Scholar 

  • Fletcher, D. C., & Schuchard, R. A. (1997). Preferred retinal loci relationship to macular scotomas in a low-vision population. Ophthalmology, 104, 632–638.

    Article  PubMed  Google Scholar 

  • González, E. G., Tarita-Nistor, L., Markowitz, S. N., & Stainbach, M. J. (2007). Computer-based test to measure optimal visual acuity in age-related macular degeneration. Investigative Ophthalmology & Visual Science, 48, 4838–4845.

    Article  Google Scholar 

  • Guez, J. E., Le Gargasson, J. F., Rigaudiere, F., & O’Regan, J. K. (1993). Is there a systematic location for the pseudo-fovea in patients with central scotoma? Vision Research, 33, 1271–1279.

    Article  PubMed  Google Scholar 

  • Harris, M. J., Robins, D., Dieter, J. M. Jr., Fine, S. L., & Guyton, D. L. (1985). Eccentric visual acuity in patients with macular disease. Ophthalmology, 92, 1550–1553.

    Article  PubMed  Google Scholar 

  • Landa, G., Su, E., Garcia, P. M., Seiple, W. H., & Rosen, R. B. (2011). Inner segment–outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of agerelated macular degeneration. Retina, 31, 364–370.

    Article  PubMed  Google Scholar 

  • Liu, R., & Kwon, M. Y. (2016). Integrating oculomotor and perceptual training to induce a pseudofovea: A model system for studying central vision loss. Journal of Vision, 16, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins Rosa, A., Silva, M. F., Ferreira, S., Murta, J., & Castelo-Branco, M. (2013). Plasticity in the human visual cortex: An ophthalmology-based perspective. BioMed Research International, 2013, 568354.

    PubMed  Google Scholar 

  • Mandelcorn, M. S., Podbielski, D. W., & Mandelcorn, E. D. (2013). Fixation stability as a goal in the treatment of macular disease. Canadian Journal of Ophthalmology, 48, 364–367.

    Article  PubMed  Google Scholar 

  • Midena, E., Angeli, C. D., Blarzino, M. C., Valenti, M., & Segato, T. (1997). Macular function impairment in eyes with early age-related macular degeneration. Investigative Ophthalmology & Visual Science, 38, 469–477.

    Google Scholar 

  • Midena, E., Vujosevic, S., & Cavarzeran, F., for the Microperimetry Study Group (2010). Normative agerelated database for the MP1 microperimeter. Ophthalmology., 117, 1571–1576.

    Article  PubMed  Google Scholar 

  • Mollon, J. D., & Reffin, J. P. (1989). A computer-controlled colour vision test that combines the principles of Chibret and of Stilling. Proceedings of the Physyiological Society, vol. 414.

  • Nathans, J., Thomas, D., & Hogness, D. S. (1986). Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science, 232, 193–202.

    Article  PubMed  Google Scholar 

  • Nilsson, U. L., Frennesson, C., & Nilsson, S. E. (1998). Location and stability of a newly established eccentric retinal locus suitable for reading, achieved through training of patients with a dense central scotoma. Optometry and Vision Science, 75, 873–878.

    Article  PubMed  Google Scholar 

  • Nilsson, U. L., Frennesson, C., & Nilsson, S. E. (2003). Patients with AMD and a large absolute central scotoma can be trained successfully to use eccentric viewing, as demonstrated in a scanning laser ophthalmoscope. Vision Research, 43, 1777–1787.

    Article  PubMed  Google Scholar 

  • Owsley, C., & Sloane, M. E. (1987). Contrast sensitivity, acuity, and the perception of ‘real-world’ targets. British Journal of Ophthalmology, 71, 791–796.

    Article  PubMed  Google Scholar 

  • Peyrin, C., Ramanoel, S., Roux-Sibilon, A., Chokron, S., & Hera, R. (2017). Scene perception in age-related macular degeneration: Effect of spatial frequencies and contrast in residual vision. Vision Research, 130, 36–47.

    Article  PubMed  Google Scholar 

  • Polyak, S. (1949). Retinal structure and color vision. In F. B. Fischer, A. J. Schaeffer, & A. Sorsby A (Eds.), Documenta Ophthalmologica: Advances in Ophthalmology. The Hague, Netherlands: Dr. W. Junk, vol. 3, p. 24Y46.

  • Putnam, N. M., Hofer, H. J., Doble, N., Chen, L., Carroll, J., & Williams, D. R. (2005). The locus of fixation and foveal cone mosaic. Journal of Vision, 5, 632–639.

    Article  PubMed  Google Scholar 

  • Rodriguez-Carmona, M. L., Harlow, J. A., Walker, G., & Barbur, J. L. (2005). The variability of normal trichromatic vision and the establishment of the “normal” range. Proceedings of 10th Congress of the International Colour Association. Granada (pp. 979–982).

  • Schotter, E. R., Angele, B., & Rayner, K. (2012). Parafoveal processing in reading. Attention, Perception, & Psychophysics, 74, 5–35.

    Article  Google Scholar 

  • Steinberg, E. P., Tielsch, J. M., Schein, O. D., Javitt, J. C., Sharkey, P., Cassard, S. D., Legro, M. W., Diener-West, M., Bass, E. B., Damiano, A. M., et al. (1994). The VF-14. An index of functional impairment in patients with cataract. Archives of Ophthalmology, 112, 630–638.

    Article  PubMed  Google Scholar 

  • Sunness, J. S., Schuchard, R. A., Shen, N., Rubin, G. S., Dagnelie, G., & Haselwood, M. (1995). Landmark-driven fundus perimetry using the scanning laser ophthalmoscope. Investigative Ophthalmology & Visual Science, 36, 1863–1874.

    Google Scholar 

  • Tarita-Nistor, L., González, E. G., Markowitz, S. N., & Steinbach, M. J. (2009). Plasticity of fixation in patients with central vision loss. Visual Neuroscience, 26(5–6), 487–494.

    Article  PubMed  Google Scholar 

  • Thomson, L. C. (1946). Foveal colour sensitivity. Nature, 157, 805.

    Article  PubMed  Google Scholar 

  • Ueda-Consolvo, T., Otsuka, M., Hayashi, Y., Ishida, M., & Havashi, A. (2015). Microperimetric biofeedback training improved visual acuity after successful macular hole surgery. Journal of Ophthalmology, 2015, 572942.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vemala, R., Sivaprasad, S., & Barbur, J. L. (2017). Detection of early loss of color vision in age-related macular degeneration—with emphasis on drusen and reticular pseudodrusen. Investigative Ophthalmology & Visual Science, 58, 247–254.

    Article  Google Scholar 

  • Vingolo, E. M., Cavarretta, S., Domanico, D., Parisi, F., & Malagola, R. (2007). Microperimetric biofeedback in AMD patients. Appl Psychophysiol Biofeedback, 32, 185–189.

    Article  PubMed  Google Scholar 

  • Vingolo, E. M., Salvatore, S., & Cavarretta, S. (2009). Low-vision rehabilitation by means of MP-1 biofeedback examination in patients with different macular diseases: A pilot study. Appl. Psychophysiol. Biofeedback, 34, 127–133.

    Article  PubMed  Google Scholar 

  • Vingolo, E. M., Salvatore, S., & Limoli, P. G. (2013). MP-1 biofeedback: luminous pattern stimulus versus acoustic biofeedback in age related macular degeneration (AMD). Appl Psychophysiol Biofeedback, 38, 11–16.

    Article  PubMed  Google Scholar 

  • Westheimer, G. (1965). Visual acuity. Annual Review of Psychology, 16, 359–380.

    Article  PubMed  Google Scholar 

  • Westheimer, G. (1984). Spatial vision. Annual Review of Psychology, 35, 201–226.

    Article  PubMed  Google Scholar 

  • Zeffren, B. S., Applegate, R. A., Bradley, A., & van Heuven, W. A. J. (1990). Retinal fixation point location in the foveal avascular zone. Investigative Ophthalmology & Visual Science, 31, 2099–2105.

    Google Scholar 

Download references

Acknowledgements

We would like to thank very much Kornél Szekeres, Miklós Maczkó, and Ágnes Urbin for their support to develop the software. We would also like to acknowledge financial support from the Sao Paulo Research Foundation - FAPESP (Grant Nos. 2016/22007-5 and 2016/04538-3), National Council for Scientific and Technological Development – CNPq (Grant Nos. 470785/2014-4 and 404239/2016-1), and the János Bolyai Scholarship of the Hungarian Academy of Sciences. We also thank the patients and the healthy volunteers for their participation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Németh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barboni, M.T.S., Récsán, Z., Szepessy, Z. et al. Preliminary Findings on the Optimization of Visual Performance in Patients with Age-Related Macular Degeneration Using Biofeedback Training. Appl Psychophysiol Biofeedback 44, 61–70 (2019). https://doi.org/10.1007/s10484-018-9423-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-018-9423-3

Keywords

Navigation