1932

Abstract

Salmon were among the first nonmodel species for which systematic population genetic studies of natural populations were conducted, often to support management and conservation. The genomics revolution has improved our understanding of the evolutionary ecology of salmon in two major ways: () Large increases in the numbers of genetic markers (from dozens to 104–106) provide greater power for traditional analyses, such as the delineation of population structure, hybridization, and population assignment, and () qualitatively new insights that were not possible with traditional genetic methods can be achieved by leveraging detailed information about the structure and function of the genome. Studies of the first type have been more common to date, largely because it has taken time for the necessary tools to be developed to fully understand the complex salmon genome. We expect that the next decade will witness many new studies that take full advantage of salmonid genomic resources.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021419-083617
2020-02-15
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/animal/8/1/annurev-animal-021419-083617.html?itemId=/content/journals/10.1146/annurev-animal-021419-083617&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Nelson J. 1994. Fishes of the World New York: John Wiley, 3rd ed..
  2. 2. 
    Beamish RJ 2018. The Ocean Ecology of Pacific Salmon and Trout Bethesda, MD: Am. Fish. Soc 1,090 pp.
  3. 3. 
    Kulmala S, Haapasaari P, Karjalainen TP, Kuikka S, Pakarinen T et al. 2012. Ecosystem services provided by the Baltic salmon: a regional perspective to the socio-economic benefits associated with a keystone species. Socioeconomic Importance of Ecosystem Services in the Nordic Countries: Synthesis in the Context of the Economics of Ecosystems and Biodiversity (TEEB) M Kettunen, P Vihervaara, S Kinnunen, D D'Amato, T Badura et al.266–76 Copenhagen: Nord. Counc. Minist.
    [Google Scholar]
  4. 4. 
    Verspoor E, Stradmeyer L, Nielsen J 2007. The Atlantic Salmon: Genetics, Conservation and Management Oxford, UK: Blackwell Publ.
  5. 5. 
    Reich D. 2018. Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past Oxford, UK: Oxford Univ. Press
  6. 6. 
    Quinn TP. 2018. The Behavior and Ecology of Pacific Salmon and Trout Seattle: Univ. Wash. Press
  7. 7. 
    Fleming IA. 1996. Reproductive strategies of Atlantic salmon: ecology and evolution. Rev. Fish Biol. Fish. 16:379–416
    [Google Scholar]
  8. 8. 
    Natl. Res. Counc 2004. Atlantic Salmon in Maine: Report from the Committee on Atlantic Salmon in Maine Washington, DC: Natl. Acad. Press
  9. 9. 
    Waples RS. 1995. Evolutionarily significant units and the conservation of biological diversity under the Endangered Species Act. Am. Fish. Soc. Symp. 17:8–27
    [Google Scholar]
  10. 10. 
    Montgomery DR. 2000. Coevolution of the Pacific salmon and Pacific Rim topography. Geology 28:121107–10
    [Google Scholar]
  11. 11. 
    Waples RS, Pess GR, Beechie T 2008. Evolutionary history of Pacific salmon in dynamic environments. Evol. Appl. 1:189–206
    [Google Scholar]
  12. 12. 
    Hendry AP, Castric V, Kinnison MT, Quinn TP 2004. The evolution of philopatry and dispersal: homing versus straying in salmonids. Evolution Illuminated: Salmon and Their Relatives AP Hendry, SC Stearns 52–91 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  13. 13. 
    McClure MM, Holmes EE, Sanderson BL, Jordan CE 2003. A large-scale, multispecies status assessment: anadromous salmonids in the Columbia River Basin. Ecol. Appl. 13:964–89
    [Google Scholar]
  14. 14. 
    Ruggerone GT, Irvine JR. 2018. Numbers and biomass of natural- and hatchery-origin pink salmon, chum salmon, and sockeye salmon in the North Pacific Ocean, 1925–2015. Mar. Coast. Fish. 10:152–68
    [Google Scholar]
  15. 15. 
    Glover KA, Solberg MF, McGinnity P, Hindar K, Verspoor E et al. 2017. Half a century of genetic interaction between farmed and wild Atlantic salmon: status of knowledge and unanswered questions. Fish Fish 18:890–927
    [Google Scholar]
  16. 16. 
    Naish KA, Taylor JE, Levin PS, Quinn TP, Winton JR et al. 2007. An evaluation of the effects of conservation and fishery enhancement hatcheries on wild populations of salmon. Adv. Mar. Biol. 53:61–194
    [Google Scholar]
  17. 17. 
    Fraser DJ. 2008. How well can captive breeding programs conserve biodiversity? A review of salmonids. Evol. Appl. 1:535–86
    [Google Scholar]
  18. 18. 
    Kostow K. 2009. Factors that contribute to the ecological risks of salmon and steelhead hatchery programs and some mitigating strategies. Rev. Fish Biol. Fish. 19:9–31
    [Google Scholar]
  19. 19. 
    Araki H, Cooper B, Blouin MS 2007. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318:100–3
    [Google Scholar]
  20. 20. 
    Waples RS, Nammack M, Cochrane JF, Hutchings JA 2013. A tale of two acts: endangered species listing practices in Canada and the United States. Bioscience 63:723–34
    [Google Scholar]
  21. 21. 
    Waples RS. 2006. Distinct population segments. In The Endangered Species Act at Thirty, Vol. 2. Conserving Biodiversity in Human-Dominated Landscapes JM Scott, DD Goble, FW Davis 127–49 Washington: Island
    [Google Scholar]
  22. 22. 
    Holtby LB, Ciruna KA. 2007. Conservation units for Pacific Salmon under the Wild Salmon Policy Res. Doc. 2007/070 Fish Oceans Can., Ottawa, Can.:
  23. 23. 
    Reed TE, Schindler DE, Hague MJ, Patterson DA, Meir E et al. 2011. Time to evolve? Potential evolutionary responses of Fraser River sockeye salmon to climate change and effects on persistence. PLOS ONE 6:e20380
    [Google Scholar]
  24. 24. 
    McClure MM, Carlson SM, Beechie TJ, Pess GR, Jorgensen JC et al. 2008. Evolutionary consequences of habitat loss for Pacific anadromous salmonids. Evol. Appl. 1:300–18
    [Google Scholar]
  25. 25. 
    Anderson SC, Moore JW, McClure MM, Dulvy NK, Cooper AB 2015. Portfolio conservation of metapopulations under climate change. Ecol. Appl. 25:559–72
    [Google Scholar]
  26. 26. 
    Brennan SR, Schindler DE, Cline TJ, Walsworth TE, Buck G, Fernandez DP 2019. Shifting habitat mosaics and fish production across river basins. Science 364:783–86
    [Google Scholar]
  27. 27. 
    Fraser DJ, Weir LK, Bernatchez L, Hansen MM, Taylor EB 2011. Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106:404–20
    [Google Scholar]
  28. 28. 
    Myers RA, Barrowman NJ, Hutchings JA, Rosenberg AA 1995. Population-dynamics of exploited fish stocks at low population-levels. Science 269:1106–8
    [Google Scholar]
  29. 29. 
    Utter FM, Allendorf FW, Hodgins HO 1973. Genetic variability and relationships in Pacific salmon and related trout based on protein variations. Syst. Zool. 22:257–70
    [Google Scholar]
  30. 30. 
    Moran P, Teel DJ, Banks MA, Beacham TD, Bellinger MR et al. 2013. Divergent life-history races do not represent Chinook salmon coast-wide: the importance of scale in Quaternary biogeography. Can. J. Fish. Aquat. Sci. 70:415–35
    [Google Scholar]
  31. 31. 
    Gilbey J, Coughlan J, Wennevik V, Prodohl P, Stevens JR et al. 2018. A microsatellite baseline for genetic stock identification of European Atlantic salmon (Salmo salar L.). ICES J. Mar. Sci. 75:662–74
    [Google Scholar]
  32. 32. 
    Bradbury IR, Hamilton LC, Dempson B, Robertson MJ, Bourret V et al. 2015. Transatlantic secondary contact in Atlantic Salmon, comparing microsatellites, a single nucleotide polymorphism array and restriction-site associated DNA sequencing for the resolution of complex spatial structure. Mol. Ecol. 24:5130–44
    [Google Scholar]
  33. 33. 
    Waples RS, Gustafson RG, Weitkamp LA, Myers JM, Johnson OW et al. 2001. Characterizing diversity in salmon from the Pacific Northwest. J. Fish Biol. 59:1–41
    [Google Scholar]
  34. 34. 
    Hawkins SL, Varnavskaya NV, Matzak EA, Efremov VV, Guthrie CM et al. 2002. Population structure of odd-broodline Asian pink salmon and its contrast to the even-broodline structure. J. Fish Biol. 60:370–88
    [Google Scholar]
  35. 35. 
    Vähä JP, Erkinaro J, Niemelä E, Primmer CR, Saloniemi I et al. 2011. Temporally stable population-specific differences in run timing of one-sea-winter Atlantic salmon returning to a large river system. Evol. Appl. 4:39–53
    [Google Scholar]
  36. 36. 
    Waples RS, Lindley ST. 2018. Genomics and conservation units: the genetic basis of adult migration timing in Pacific salmonids. Evol. Appl. 11:1518–26
    [Google Scholar]
  37. 37. 
    Cross TF, Mills CPR, de Courcy Williams M 1992. An intensive study of allozyme variation in freshwater resident and anadromous trout, Salmo trutta L., in western Ireland. J. Fish Biol. 40:25–32
    [Google Scholar]
  38. 38. 
    Bourret V, Kent MP, Primmer CR, Vasemagi A, Karlsson S et al. 2013. SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar). Mol. Ecol. 22:532–51
    [Google Scholar]
  39. 39. 
    Vähä JP, Erkinaro J, Niemelä E, Primmer CR 2007. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol. Ecol. 16:2638–54
    [Google Scholar]
  40. 40. 
    Shaklee JB, Beacham TD, Seeb L, White BA 1999. Managing fisheries using genetic data: case studies from four species of Pacific salmon. Fish. Res. 43:45–78
    [Google Scholar]
  41. 41. 
    Swatdipong A, Vasemägi A, Niva T, Koljonen ML, Primmer CR 2013. Genetic mixed-stock analysis of lake-run brown trout Salmo trutta fishery catches in the Inari Basin, northern Finland: implications for conservation and management. J. Fish Biol. 83:598–617
    [Google Scholar]
  42. 42. 
    Waples RS. 2004. Salmonid insights into effective population size. Evolution Illuminated: Salmon and Their Relatives AP Hendry, SC Stearns 295–314 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  43. 43. 
    Waples RS. 1990. Conservation genetics of Pacific Salmon. III. Estimating effective population size. J. Hered. 81:277–89
    [Google Scholar]
  44. 44. 
    Ardren WR, Kapuscinski AR. 2003. Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Mol. Ecol. 12:35–49
    [Google Scholar]
  45. 45. 
    Palstra FP, O'Connell MF, Ruzzante DE 2009. Age structure, changing demography and effective population size in Atlantic Salmon (Salmo salar). Genetics 182:1233–49
    [Google Scholar]
  46. 46. 
    Whiteley AR, Coombs JA, Cembrola M, O'Donnell MJ, Hudy M et al. 2015. Effective number of breeders provides a link between interannual variation in stream flow and individual reproductive contribution in a stream salmonid. Mol. Ecol. 24:3585–602
    [Google Scholar]
  47. 47. 
    Hindar K, Ryman N, Utter F 1991. Genetic effects of cultured fish on natural fish populations. Can. J. Fish. Aquat. Sci. 48:945–57
    [Google Scholar]
  48. 48. 
    Eldridge WH, Myers JM, Naish KA 2009. Long-term changes in fine-scale population structure of coho salmon populations (Oncorhynchus kisutch) subject to extensive supportive breeding. Heredity 103:299–309
    [Google Scholar]
  49. 49. 
    Ford MJ, Murdoch A, Hughes M 2015. Using parentage analysis to estimate rates of straying and homing in Chinook salmon (Oncorhynchus tshawytscha). Mol. Ecol. 24:1109–21
    [Google Scholar]
  50. 50. 
    Schwenke PL, Rhydderch JG, Ford MJ, Marshall AR, Park LK 2006. Forensic identification of endangered Chinook salmon (Oncorhynchus tshawytscha) using a multilocus SNP assay. Conserv. Genet. 7:983–89
    [Google Scholar]
  51. 51. 
    Primmer CR, Koskinen MT, Piironen J 2000. The one that did not get away: individual assignment using microsatellite data detects a case of fishing competition fraud. Proc. R. Soc. Lond. B 267:1699–704
    [Google Scholar]
  52. 52. 
    Garner BA, Hand BK, Amish SJ, Bernatchez L, Foster JT et al. 2016. Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol. Evol. 31:81–83
    [Google Scholar]
  53. 53. 
    VonSchalburg KR, Cooper GA, Leong J, Robb A, Lieph R et al. 2008. Expansion of the genomics research on Atlantic salmon Salmo salar L. project (GRASP) microarray tools. J. Fish Biol. 72:2051–70
    [Google Scholar]
  54. 54. 
    Lien S, Gidskehaug L, Moen T, Hayes BJ, Berg PR et al. 2011. A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns. BMC Genom 12:615
    [Google Scholar]
  55. 55. 
    Lien S, Koop BF, Sandve SR, Miller JR, Kent MP et al. 2016. The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–5
    [Google Scholar]
  56. 56. 
    Barson NJ, Aykanat T, Hindar K, Baranski M, Bolstad GH et al. 2015. Sex-dependent dominance at a single locus maintains variation in age at maturity in Atlantic salmon. Nature 528:405–8
    [Google Scholar]
  57. 57. 
    Christensen KA, Leong JS, Sakhrani D, Biagi CA, Minkley DR et al. 2018. Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome. PLOS ONE 13:e0195461
    [Google Scholar]
  58. 58. 
    Narum SR, Di Genova A, Micheletti SJ, Maass A 2018. Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon. Proc. R. Soc. B Biol. Sci. 285:20180935
    [Google Scholar]
  59. 59. 
    Ouborg NJ, Angeloni F, Vergeer P 2010. An essay on the necessity and feasibility of conservation genomics. Conserv. Genet. 11:643–53
    [Google Scholar]
  60. 60. 
    Primmer CR. 2009. From conservation genetics to conservation genomics. Ann. N.Y. Acad. Sci. 1162:357–68
    [Google Scholar]
  61. 61. 
    Allendorf FW, Hohenlohe PA, Luikart G 2010. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11:697–709
    [Google Scholar]
  62. 62. 
    Naish KA, Hard JJ. 2008. Bridging the gap between the phenotype and the genotype: linking genetic variation, selection, and adaptation in fishes. Fish Fish 9:396–422
    [Google Scholar]
  63. 63. 
    Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA 2013. Genotyping-by-sequencing in ecological and conservation genomics. Mol. Ecol. 22:2841–47
    [Google Scholar]
  64. 64. 
    Grueber CE. 2015. Comparative genomics for biodiversity conservation. Comput. Struct. Biotechnol. J. 13:370–75
    [Google Scholar]
  65. 65. 
    Ryder OA. 2005. Conservation genomics: applying whole genome studies to species conservation efforts. Cytogenet. Genome Res. 108:6–15
    [Google Scholar]
  66. 66. 
    Supple MA, Shapiro B. 2018. Conservation of biodiversity in the genomics era. Genome Biol 19:131
    [Google Scholar]
  67. 67. 
    Shafer ABA, Wolf JBW, Alves PC, Bergström L, Bruford MW et al. 2015. Genomics and the challenging translation into conservation practice. Trends Ecol. Evol. 30:78–87
    [Google Scholar]
  68. 68. 
    Funk WC, McKay JK, Hohenlohe PA, Allendorf FW 2012. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27:489–96
    [Google Scholar]
  69. 69. 
    Pearse DE. 2016. Saving the spandrels? Adaptive genomic variation in conservation and fisheries management. J. Fish Biol. 89:2697–716
    [Google Scholar]
  70. 70. 
    Kardos M, Shafer ABA. 2018. The peril of gene-targeted conservation. Trends Ecol. Evol. 33:827–39
    [Google Scholar]
  71. 71. 
    Bernatchez L, Wellenreuther M, Araneda C, Ashton DT, Barth JMI et al. 2017. Harnessing the power of genomics to secure the future of seafood. Trends Ecol. Evol. 32:665–80
    [Google Scholar]
  72. 72. 
    Haig SM, Miller MP, Bellinger R, Draheim HM, Mercer DM, Mullins TD 2016. The conservation genetics juggling act: integrating genetics and ecology, science and policy. Evol. Appl. 9:181–95
    [Google Scholar]
  73. 73. 
    Funk WC, Forester BR, Converse SJ, Darst C, Morey S 2019. Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. Conserv. Genet. 20:115–34
    [Google Scholar]
  74. 74. 
    Waples RS, Punt AE, Cope JM 2008. Integrating genetic data into management of marine resources: How can we do it better. Fish Fish 9:423–49
    [Google Scholar]
  75. 75. 
    Larson WA, Seeb LW, Everett MV, Waples RK, Templin WD, Seeb JE 2014. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol. Appl. 7:355–69
    [Google Scholar]
  76. 76. 
    Nichols KM, Kozfkay CC, Narum SR 2016. Genomic signatures among Oncorhynchus nerka ecotypes to inform conservation and management of endangered sockeye salmon. Evol. Appl. 9:1285–300
    [Google Scholar]
  77. 77. 
    Limborg MT, Larson WA, Shedd K, Seeb LW, Seeb JE 2018. Novel RAD sequence data reveal a lack of genomic divergence between dietary ecotypes in a landlocked salmonid population. Conserv. Genet. Resourc. 10:169–71
    [Google Scholar]
  78. 78. 
    Sylvester EVA, Beiko RG, Bentzen P, Paterson I, Horne JB et al. 2018. Environmental extremes drive population structure at the northern range limit of Atlantic salmon in North America. Mol. Ecol. 27:4026–40
    [Google Scholar]
  79. 79. 
    Moore JS, Bourret V, Dionne M, Bradbury I, O'Reilly P et al. 2014. Conservation genomics of anadromous Atlantic salmon across its North American range: Outlier loci identify the same patterns of population structure as neutral loci. Mol. Ecol. 23:5680–97
    [Google Scholar]
  80. 80. 
    Aykanat T, Johnston SE, Orell P, Niemela E, Erkinaro J, Primmer CR 2015. Low but significant genetic differentiation underlies biologically meaningful phenotypic divergence in a large Atlantic salmon population. Mol. Ecol. 24:5158–74
    [Google Scholar]
  81. 81. 
    Aykanat T, Lindqvist M, Pritchard VL, Primmer CR 2016. From population genomics to conservation and management: a workflow for targeted analysis of markers identified using genome-wide approaches in Atlantic salmon Salmo salar. J. Fish Biol 89:2658–79
    [Google Scholar]
  82. 82. 
    Pritchard VL, Erkinaro J, Kent MP, Niemela E, Orell P et al. 2016. Single nucleotide polymorphisms to discriminate different classes of hybrid between wild Atlantic salmon and aquaculture escapees. Evol. Appl. 9:1017–31
    [Google Scholar]
  83. 83. 
    Waters CD, Hard JJ, Brieuc MSO, Fast DE, Warheit KI et al. 2015. Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding. Evol. Appl. 8:956–71
    [Google Scholar]
  84. 84. 
    Ackerman MW, Habicht C, Seeb LW 2011. Single-nucleotide polymorphisms (SNPs) under diversifying selection provide increased accuracy and precision in mixed-stock analyses of sockeye salmon from the Copper River, Alaska. Trans. Am. Fish. Soc. 140:865–81
    [Google Scholar]
  85. 85. 
    Beacham TD, Wallace C, Jonsen K, McIntosh B, Candy JR et al. 2019. Comparison of coded-wire tagging with parentage-based tagging and genetic stock identification in a large-scale coho salmon fisheries application in British Columbia, Canada. Evol. Appl. 12:230–54
    [Google Scholar]
  86. 86. 
    McKinney GJ, Seeb JE, Seeb LW 2017. Managing mixed-stock fisheries: genotyping multi-SNP haplotypes increases power for genetic stock identification. Can. J. Fish. Aquat. Sci. 74:429–34
    [Google Scholar]
  87. 87. 
    Baetscher DS, Clemento AJ, Ng TC, Anderson EC, Garza JC 2018. Microhaplotypes provide increased power from short-read DNA sequences for relationship inference. Mol. Ecol. Resourc. 18:296–305
    [Google Scholar]
  88. 88. 
    Bradbury IR, Wringe BF, Watson B, Paterson I, Horne J et al. 2018. Genotyping-by-sequencing of genome-wide microsatellite loci reveals fine-scale harvest composition in a coastal Atlantic salmon fishery. Evol. Appl. 11:918–30
    [Google Scholar]
  89. 89. 
    Carvalho SB, Velo-Anton G, Tarroso P, Portela AP, Barata M et al. 2017. Spatial conservation prioritization of biodiversity spanning the evolutionary continuum. Nat. Ecol. Evol. 1:0151
    [Google Scholar]
  90. 90. 
    Quinn TP, Wood CC, Margolis L, Riddell BE, Hyatt KD 1987. Homing in wild sockeye salmon (Oncorhynchus nerka) populations as inferred from differences in parasite prevalance and allozyme allele frequencies. Can. J. Fish. Aquat. Sci. 44:1963–71
    [Google Scholar]
  91. 91. 
    Bickham JW, Wood CC, Patton JC 1995. Biogeographic implications of cytochrome-b sequences and allozymes in sockeye (Oncorhynchus nerka). J. Hered. 86:140–44
    [Google Scholar]
  92. 92. 
    Verspoor E, McCarthy EM, Knox D, Bourke EA, Cross TF 1999. The phylogeography of European Atlantic salmon (Salmo salar L.) based on RFLP analysis of the ND1/16sRNA region of the mtDNA. Biol. J. Linn. Soc. 68:129–46
    [Google Scholar]
  93. 93. 
    Tonteri A, Titov S, Veselov A, Zubchenko A, Koskinen MT et al. 2005. Phylogeography of anadromous and non-anadromous Atlantic salmon (Salmo salar) from northern Europe. Ann. Zool. Fenn. 42:1–22
    [Google Scholar]
  94. 94. 
    Ozerov M, Vasemägi A, Wennevik V, Diaz-Fernandez R, Kent M et al. 2013. Finding markers that make a difference: DNA pooling and SNP-arrays identify population informative markers for genetic stock identification. PLOS ONE 8:e82434
    [Google Scholar]
  95. 95. 
    Rougemont Q, Bernatchez L. 2018. The demographic history of Atlantic salmon (Salmo salar) across its distribution range reconstructed from approximate Bayesian computations. Evolution 72:1261–77
    [Google Scholar]
  96. 96. 
    Waples RS. 1991. Genetic interactions between hatchery and wild salmonids: lessons from the Pacific Northwest. Can. J. Fish. Aquat. Sci. 48:124–33
    [Google Scholar]
  97. 97. 
    Reisenbichler RR, McIntyre JD. 1977. Genetic differences in growth and survival of juvenile hatchery and wild steelhead trout, Salmo gairdneri. J. Fish. Res. Board Can. 34:123–28
    [Google Scholar]
  98. 98. 
    Rawding DJ, Sharpe CS, Blankenship SM 2014. Genetic-based estimates of adult chinook salmon spawner abundance from carcass surveys and juvenile out-migrant traps. Trans. Am. Fish. Soc. 143:55–67
    [Google Scholar]
  99. 99. 
    Janowitz-Koch I, Rabe C, Kinzer R, Nelson D, Hess MA, Narum SR 2019. Long-term evaluation of fitness and demographic effects of a Chinook salmon supplementation program. Evol. Appl. 12:456–69
    [Google Scholar]
  100. 100. 
    Anderson EC, Garza JC. 2006. The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics 172:2567–82
    [Google Scholar]
  101. 101. 
    Steele CA, Anderson EC, Ackerman MW, Hess MA, Campbell NR et al. 2013. A validation of parentage-based tagging using hatchery steelhead in the Snake River basin. Can. J. Fish. Aquat. Sci. 70:1046–54
    [Google Scholar]
  102. 102. 
    Waples RS, Waples RK. 2011. Inbreeding effective population size and parentage analysis without parents. Mol. Ecol. Resourc. 11:162–71
    [Google Scholar]
  103. 103. 
    Bravington MV, Skaug HJ, Anderson EC 2016. Close-kin mark-recapture. Stat. Sci. 31:259–74
    [Google Scholar]
  104. 104. 
    Utter F, Epifanio J. 2002. Marine aquaculture: genetic potentialities and pitfalls. Rev. Fish Biol. Fish. 12:59–77
    [Google Scholar]
  105. 105. 
    Muhlfeld CC, Kalinowski ST, McMahon TE, Taper ML, Painter S et al. 2009. Hybridization rapidly reduces fitness of a native trout in the wild. Biol. Lett. 5:328–31
    [Google Scholar]
  106. 106. 
    Muhlfeld CC, D'Angelo VS, Downs C, Powell J, Amish S et al. 2016. Genetic status and conservation of Westslope Cutthroat Trout in Glacier National Park. Trans. Am. Fish. Soc. 145:1093–109
    [Google Scholar]
  107. 107. 
    Harvey AC, Glover KA, Taylor MI, Creer S, Carvalho GR 2016. A common garden design reveals population-specific variability in potential impacts of hybridization between populations of farmed and wild Atlantic salmon, Salmo salar L. Evol. Appl. 9:435–49
    [Google Scholar]
  108. 108. 
    Manhard CV, Adkison MD, Hard JJ, Smoker WW, Gharrett AJ 2018. Local adaptation of phenology revealed in outcrosses between spawning segments of a salmonid population. Mol. Ecol. 27:4698–710
    [Google Scholar]
  109. 109. 
    Amish SJ, Hohenlohe PA, Painter S, Leary RF, Muhlfeld C et al. 2012. RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assays. Mol. Ecol. Resourc. 12:653–60
    [Google Scholar]
  110. 110. 
    Hand BK, Hether TD, Kovach RP, Muhlfeld CC, Amish SJ et al. 2015. Genomics and introgression: discovery and mapping of thousands of species-diagnostic SNPs using RAD sequencing. Curr. Zool. 61:146–54
    [Google Scholar]
  111. 111. 
    Elliott L, Russello MA. 2018. SNP panels for differentiating advanced-generation hybrid classes in recently diverged stocks: a sensitivity analysis to inform monitoring of sockeye salmon re-stocking programs. Fish. Res. 208:339–45
    [Google Scholar]
  112. 112. 
    Larson WA, Palti Y, Gao G, Warheit KI, Seeb JE 2018. Rapid discovery of SNPs that differentiate hatchery steelhead trout from ESA-listed natural-origin steelhead trout using a 57K SNP array. Can. J. Fish. Aquat. Sci. 75:1160–68
    [Google Scholar]
  113. 113. 
    Kovach RP, Hand BK, Hohenlohe PA, Cosart TF, Boyer MC et al. 2016. Vive la resistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proc. R. Soc. B. Biol. Sci. 283:184320161380
    [Google Scholar]
  114. 114. 
    Glover KA, Pertoldi C, Besnier F, Wennevik V, Kent M, Skaala O 2013. Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs. BMC Genet 14:74
    [Google Scholar]
  115. 115. 
    Lamaze FC, Sauvage C, Marie A, Garant D, Bernatchez L 2012. Dynamics of introgressive hybridization assessed by SNP population genomics of coding genes in stocked brook charr (Salvelinus fontinalis). Mol. Ecol. 21:2877–95
    [Google Scholar]
  116. 116. 
    Letourneau J, Ferchaud AL, Le Luyer J, Laporte M, Garant D, Bernatchez L 2018. Predicting the genetic impact of stocking in Brook Charr (Salvelinus fontinalis) by combining RAD sequencing and modeling of explanatory variables. Evol. Appl. 11:577–92
    [Google Scholar]
  117. 117. 
    Kalinowski ST, Van Doornick DM, Kozfkay CC, Waples RS 2012. Genetic diversity in the Snake River sockeye salmon captive broodstock program as estimated from broodstock records. Conserv. Genet. 13:1183–93
    [Google Scholar]
  118. 118. 
    Christie MR, French RA, Marine ML, Blouin MS 2014. How much does inbreeding contribute to the reduced fitness of hatchery-born steelhead (Oncorhynchus mykiss) in the wild. J. Hered. 105:111–19
    [Google Scholar]
  119. 119. 
    Naish KA, Seamons TR, Dauer MB, Hauser L, Quinn TP 2013. Relationship between effective population size, inbreeding and adult fitness-related traits in a steelhead (Oncorhynchus mykiss) population released in the wild. Mol. Ecol. 22:1295–309
    [Google Scholar]
  120. 120. 
    Wang S, Hard JJ, Utter FM 2002. Salmonid inbreeding: a review. Rev. Fish Biol. Fish. 11:301–19
    [Google Scholar]
  121. 121. 
    Thrower F, Hard JJ. 2009. Effects of a single event of close inbreeding on growth and survival in steelhead. Conserv. Genet. 10:1299–307
    [Google Scholar]
  122. 122. 
    Keller LF, Waller DM. 2002. Inbreeding effects in wild populations. Trends Ecol. Evol. 17:230–41
    [Google Scholar]
  123. 123. 
    Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW 2016. Genomics advances the study of inbreeding depression in the wild. Evol. Appl. 9:1205–18
    [Google Scholar]
  124. 124. 
    Kardos M, Luikart G, Allendorf FW 2015. Measuring individual inbreeding in the age of genomics: Marker-based measures are better than pedigrees. Heredity 115:63–72
    [Google Scholar]
  125. 125. 
    Perrier C, Ferchaud AL, Sirois P, Thibault I, Bernatchez L 2017. Do genetic drift and accumulation of deleterious mutations preclude adaptation? Empirical investigation using RADseq in a northern lacustrine fish. Mol. Ecol. 26:6317–35
    [Google Scholar]
  126. 126. 
    Ackerman MW, Hand BK, Waples RK, Luikart G, Waples RS et al. 2017. Effective number of breeders from sibship reconstruction: empirical evaluations using hatchery steelhead. Evol. Appl. 10:146–60
    [Google Scholar]
  127. 127. 
    Phillips R, Ráb P. 2001. Chromosome evolution in the Salmonidae (Pisces): an update. Biol. Rev. Camb. Philos. Soc. 76:1–25
    [Google Scholar]
  128. 128. 
    Waples RK, Larson WA, Waples RS 2016. Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of loci. Heredity 117:233–40
    [Google Scholar]
  129. 129. 
    Ford MJ, Hempelmann J, Hanson MB, Ayres KL, Baird RW et al. 2016. Estimation of a killer whale (Orcinus orca) population's diet using sequencing analysis of DNA from feces. PLOS ONE 11:1e0144956
    [Google Scholar]
  130. 130. 
    Merilä J, Hendry AP. 2014. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7:1–14
    [Google Scholar]
  131. 131. 
    Kuparinen A, Hutchings JA. 2017. Genetic architecture of age at maturity can generate divergent and disruptive harvest-induced evolution. Philos. Trans. R. Soc. B Biol. Sci. 372:20160035
    [Google Scholar]
  132. 132. 
    Andersson L, Georges M. 2004. Domestic animal genomics: deciphering the genetics of complex traits. Nat. Rev. Genet. 5:202–12
    [Google Scholar]
  133. 133. 
    Pritchard VL, Mäkinen H, Vähä J-P, Erkinaro J, Orell P, Primmer CR 2018. Genomic signatures of fine-scale local selection in Atlantic salmon suggest involvement of sexual maturation, energy homeostasis and immune defence-related genes. Mol. Ecol. 27:2560–75
    [Google Scholar]
  134. 134. 
    Johnston SE, Orell P, Pritchard VL, Kent MP, Lien S et al. 2014. Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild population of Atlantic salmon (Salmo salar). Mol. Ecol. 23:3452–68
    [Google Scholar]
  135. 135. 
    Cauwelier E, Gilbey J, Sampayo J, Stradmeyer L, Middlemas SJ 2018. Identification of a single genomic region associated with seasonal river return timing in adult Scottish Atlantic salmon (Salmo salar), using a genome-wide association study. Can. J. Fish. Aquat. Sci. 75:1427–35
    [Google Scholar]
  136. 136. 
    Veale AJ, Russello MA. 2017. An ancient selective sweep linked to reproductive life history evolution in sockeye salmon. Sci. Rep. 7:1747
    [Google Scholar]
  137. 137. 
    Ayllon F, Kjærner-Semb E, Furmanek T, Wennevik V, Solberg MF et al. 2015. The vgll3 locus controls age at maturity in wild and domesticated Atlantic salmon (Salmo salar L.) Males. PLOS Genet 11:e1005628
    [Google Scholar]
  138. 138. 
    Hess JE, Zendt JS, Matala AR, Narum SR 2016. Genetic basis of adult migration timing in anadromous steelhead discovered through multivariate association testing. Proc. R. Soc. B Biol. Sci. 283:20153064
    [Google Scholar]
  139. 139. 
    Prince DJ, O'Rourke SM, Thompson TQ, Ali OA, Lyman HS et al. 2017. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci. Adv. 3:e1603198
    [Google Scholar]
  140. 140. 
    Micheletti SJ, Hess JE, Zendt JS, Narum SR 2018. Selection at a genomic region of major effect is responsible for evolution of complex life histories in anadromous steelhead. BMC Evol. Biol. 18:140
    [Google Scholar]
  141. 141. 
    Hecht BC, Campbell NR, Holecek DE, Narum SR 2012. Genome-wide association reveals genetic basis for the propensity to migrate in wild populations of rainbow and steelhead trout. Mol. Ecol. 22:3061–76
    [Google Scholar]
  142. 142. 
    Hecht BC, Thrower FP, Hale MC, Miller MR, Nichols KM 2012. Genetic architecture of migration-related traits in rainbow and steelhead trout, Oncorhynchus mykiss. G3 Genes Genomes Genet. 2:1113–27
    [Google Scholar]
  143. 143. 
    Hale MC, Thrower FP, Berntson EA, Miller MR, Nichols KM 2013. Evaluating adaptive divergence between migratory and nonmigratory ecotypes of a salmonid fish, Oncorhynchus mykiss. G3 Genes Genomes Genet. 3:1273–85
    [Google Scholar]
  144. 144. 
    Brieuc MSO, Ono K, Drinan DP, Naish KA 2015. Integration of Random Forest with population-based outlier analyses provides insight on the genomic basis and evolution of run timing in Chinook salmon (Oncorhynchus tshawytscha). Mol. Ecol. 24:2729–46
    [Google Scholar]
  145. 145. 
    Waters CD, Hard JJ, Brieuc MSO, Fast DE, Warheit KI et al. 2018. Genomewide association analyses of fitness traits in captive-reared Chinook salmon: applications in evaluating conservation strategies. Evol. Appl. 11:853–68
    [Google Scholar]
  146. 146. 
    Pearse DE, Barson NJ, Nome T, Gao G, Campbell MA et al. 2019. Sex-dependent dominance maintains migration supergene in rainbow trout. Nat. Ecol. Evol. In press
  147. 147. 
    Nichols KM, Broman KW, Sundin K, Young JM, Wheeler PA, Thorgaard GH 2007. Quantitative trait loci × maternal cytoplasmic environment interaction for development rate in Oncorhynchus mykiss. Genetics 175:335–47
    [Google Scholar]
  148. 148. 
    Hecht BC, Matala AP, Hess JE, Narum SR 2015. Environmental adaptation in Chinook salmon (Oncorhynchus tshawytscha) throughout their North American range. Mol. Ecol. 24:5573–95
    [Google Scholar]
  149. 149. 
    Larson WA, Limborg MT, McKinney GJ, Schindler DE, Seeb JE, Seeb LW 2017. Genomic islands of divergence linked to ecotypic variation in sockeye salmon. Mol. Ecol. 26:554–70
    [Google Scholar]
  150. 150. 
    Wellband K, Merot C, Linnansaari T, Elliott JAK, Curry RA, Bernatchez L 2019. Chromosomal fusion and life history-associated genomic variation contribute to within-river local adaptation of Atlantic salmon. Mol. Ecol. 28:1439–59
    [Google Scholar]
  151. 151. 
    Allendorf FW, Thorgaard GH. 1984. Tetraploidy and the evolution of salmonid fishes. Evolutionary Genetics of Fishes BJ Turner 1–27 New York: Plenum
    [Google Scholar]
  152. 152. 
    Allendorf FW, Bassham S, Cresko WA, Limborg MT, Seeb LW, Seeb JE 2015. Effects of crossovers between homeologs on inheritance and population genomics in polyploid-derived salmonid fishes. J. Hered. 106:217–27
    [Google Scholar]
  153. 153. 
    Waples RK, Seeb JE, Seeb LW 2017. Congruent population structure across paralogous and nonparalogous loci in Salish Sea chum salmon (Oncorhynchus keta). Mol. Ecol. 26:4131–44
    [Google Scholar]
  154. 154. 
    vonHoldt BM, Brzeski KE, Wilcove DS, Rutledge LY 2018. Redefining the role of admixture and genomics in species conservation. Conserv. Lett. 11:e12371
    [Google Scholar]
  155. 155. 
    vonHoldt BM, Kays R, Pollinger JP, Wayne RK 2016. Admixture mapping identifies introgressed genomic regions in North American canids. Mol. Ecol. 25:2443–53
    [Google Scholar]
  156. 156. 
    Zhou Y, Qiu HX, Xu SH 2017. Modeling continuous admixture using admixture-induced linkage disequilibrium. Sci. Rep. 7:1–10
    [Google Scholar]
  157. 157. 
    Lawson DJ, Hellenthal G, Myers S, Falush D 2012. Inference of population structure using dense haplotype data. PLOS Genet 8:e1002453
    [Google Scholar]
  158. 158. 
    Corbett-Detig R, Nielsen R. 2017. A hidden Markov model approach for simultaneously estimating local ancestry and admixture time using next generation sequence data in samples of arbitrary ploidy. PLOS Genet 13:31006529
    [Google Scholar]
  159. 159. 
    McKinney GJ, Seeb JE, Pascal CE, Schindler DE, Gilk-Baumer SE, Seeb LW 2019. Y-chromosome haplotypes drive variation in size and age at maturity in male Chinook salmon. bioRxiv 691063. https://doi.org/10.1101/691063
    [Crossref]
  160. 160. 
    Leitwein M, Gagnaire PA, Desmarais E, Berrebi P, Guinand B 2018. Genomic consequences of a recent three-way admixture in supplemented wild brown trout populations revealed by local ancestry tracts. Mol. Ecol. 27:3466–83
    [Google Scholar]
  161. 161. 
    Ozerov MY, Gross R, Bruneaux M, Vähä J-P, Burimski O et al. 2016. Genomewide introgressive hybridization patterns in wild Atlantic salmon influenced by inadvertent gene flow from hatchery releases. Mol. Ecol. 25:1275–93
    [Google Scholar]
  162. 162. 
    Gossieaux P, Sirois P, Bernatchez L, Garant D 2018. Introgressive hybridization between wild and domestic individuals and its relationship with parasitism in brook charr Salvelinus fontinalis. J. Fish Biol 93:664–73
    [Google Scholar]
  163. 163. 
    McClelland EK, Naish KA. 2007. What is the fitness outcome of crossing unrelated fish populations? A meta-analysis and an evaluation of future research directions. Conserv. Genet. 8:397–416
    [Google Scholar]
  164. 164. 
    Feil R, Fraga MF. 2012. Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 13:97–109
    [Google Scholar]
  165. 165. 
    Gavery MR, Nichols KM, Goetz GW, Middleton MA, Swanson P 2018. Characterization of genetic and epigenetic variation in sperm and red blood cells from adult hatchery and natural-origin steelhead, Oncorhynchus mykiss. G3 Genes Genomes Genet. 8:3723–36
    [Google Scholar]
  166. 166. 
    Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM et al. 2007. Recent human effective population size estimated from linkage disequilibrium. Genome Res 17:520–26
    [Google Scholar]
  167. 167. 
    Lehnert SJ, Kess T, Bentzen P, Kent MP, Lien S et al. 2019. Genomic signatures and correlates of widespread population declines in salmon. Nat. Commun. 10:2996
    [Google Scholar]
  168. 168. 
    Czorlich Y, Aykanat T, Erkinaro J, Orell P, Primmer CR 2018. Rapid sex-specific evolution of age at maturity is shaped by genetic architecture in Atlantic salmon. Nat. Ecol. Evol. 2:1800–7
    [Google Scholar]
  169. 169. 
    Macqueen DJ, Primmer CR, Houston RD, Nowak BF, Bernatchez L et al. 2017. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genom 18:484
    [Google Scholar]
  170. 170. 
    Thompson TQ, Bellinger MR, O'Rourke SM, Prince DJ, Stevenson AE et al. 2019. Anthropogenic habitat alteration leads to rapid loss of adaptive variation and restoration potential in wild salmon populations. PNAS 116:177–86
    [Google Scholar]
  171. 171. 
    Yoshida GM, Yanez JM, de Oliveira CAL, Ribeiro RP, Lhorente JP et al. 2018. Mate selection allows changing the genetic variability of the progeny while optimizing genetic response and controlling inbreeding. Aquaculture 495:409–14
    [Google Scholar]
  172. 172. 
    Natl. Mar. Fish. Serv 2018. Endangered and threatened wildlife: 90-day finding on a petition to list chinook salmon in the Upper Klamath-Trinity Rivers Basin as threatened or endangered under the Endangered Species Act. Fed. Regist 83:8410–14
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021419-083617
Loading
/content/journals/10.1146/annurev-animal-021419-083617
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error