1932

Abstract

People worldwide are living longer, and it is estimated that by 2050, the proportion of the world's population over 60 years of age will nearly double. Natural lung aging is associated with molecular and physiological changes that cause alterations in lung function, diminished pulmonary remodeling and regenerative capacity, and increased susceptibility to acute and chronic lung diseases. As the aging population rapidly grows, it is essential to examine how alterations in cellular function and cell-to-cell interactions of pulmonary resident cells and systemic immune cells contribute to a higher risk of increased susceptibility to infection and development of chronic diseases, such as chronic obstructive pulmonary disease and interstitial pulmonary fibrosis. This review provides an overview of physiological, structural, and cellular changes in the aging lung and immune system that facilitate the development and progression of disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034610
2020-02-10
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034610.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034610&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mannino DM, Buist AS, Petty TL, Enright PL, Redd SC 2003. Lung function and mortality in the United States: data from the First National Health and Nutrition Examination Survey follow up study. Thorax 58:388–93
    [Google Scholar]
  2. 2. 
    Beaty TH, Cohen BH, Newill CA, Menkes HA, Diamond EL, Chen CJ 1982. Impaired pulmonary function as a risk factor for mortality. Am. J. Epidemiol. 116:102–13
    [Google Scholar]
  3. 3. 
    Childs BG, Durik M, Baker DJ, van Deursen JM 2015. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21:1424–35
    [Google Scholar]
  4. 4. 
    Liu D, Hornsby PJ. 2007. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res 67:3117–26
    [Google Scholar]
  5. 5. 
    Walters MS, De BP, Salit J, Buro-Auriemma LJ, Wilson T et al. 2014. Smoking accelerates aging of the small airway epithelium. Respir. Res. 15:94
    [Google Scholar]
  6. 6. 
    Quirk JD, Sukstanskii AL, Woods JC, Lutey BA, Conradi MS et al. 2016. Experimental evidence of age-related adaptive changes in human acinar airways. J. Appl. Physiol. 120:159–65
    [Google Scholar]
  7. 7. 
    Verbeken EK, Cauberghs M, Mertens I, Clement J, Lauweryns JM, Van de Woestijne KP 1992. The senile lung. Comparison with normal and emphysematous lungs. 2. Functional aspects. Chest 101:800–9
    [Google Scholar]
  8. 8. 
    Babb TG, Rodarte JR. 2000. Mechanism of reduced maximal expiratory flow with aging. J. Appl. Physiol. 89:505–11
    [Google Scholar]
  9. 9. 
    Turner JM, Mead J, Wohl ME 1968. Elasticity of human lungs in relation to age. J. Appl. Physiol. 25:664–71
    [Google Scholar]
  10. 10. 
    Verbeken EK, Cauberghs M, Mertens I, Clement J, Lauweryns JM, Van de Woestijne KP 1992. The senile lung. Comparison with normal and emphysematous lungs. 1. Structural aspects. Chest 101:793–99
    [Google Scholar]
  11. 11. 
    Forrest JB. 1970. The effect of changes in lung volume on the size and shape of alveoli. J. Physiol. 210:533–47
    [Google Scholar]
  12. 12. 
    Janssens JP, Pache JC, Nicod LP 1999. Physiological changes in respiratory function associated with ageing. Eur. Respir. J. 13:197–205
    [Google Scholar]
  13. 13. 
    Kerstjens HA, Rijcken B, Schouten JP, Postma DS 1997. Decline of FEV1 by age and smoking status: facts, figures, and fallacies. Thorax 52:820–27
    [Google Scholar]
  14. 14. 
    Mittmann C, Edelman NH, Norris AH, Shock NW 1965. Relationship between chest wall and pulmonary compliance and age. J. Appl. Physiol. 20:1211–16
    [Google Scholar]
  15. 15. 
    Enright PL, Kronmal RA, Higgins MW, Schenker MB, Haponik EF 1994. Prevalence and correlates of respiratory symptoms and disease in the elderly. Chest 106:827–34
    [Google Scholar]
  16. 16. 
    Enright PL, Kronmal RA, Manolio TA, Schenker MB, Hyatt RE 1994. Respiratory muscle strength in the elderly: correlates and reference values. Am. J. Respir. Crit. Care Med. 149:430–38
    [Google Scholar]
  17. 17. 
    Polkey MI, Harris ML, Hughes PD, Hamnegard CH, Lyons D et al. 1997. The contractile properties of the elderly human diaphragm. Am. J. Respir. Crit. Care Med. 155:1560–64
    [Google Scholar]
  18. 18. 
    Tolep K, Higgins N, Muza S, Criner G, Kelsen SG 1995. Comparison of diaphragm strength between healthy adult elderly and young men. Am. J. Respir. Crit. Care Med. 152:677–82
    [Google Scholar]
  19. 19. 
    Sharma G, Goodwin J. 2006. Effect of aging on respiratory system physiology and immunology. Clin. Interv. Aging 1:253–60
    [Google Scholar]
  20. 20. 
    Crapo RO, Morris AH, Clayton PD, Nixon CR 1982. Lung volumes in healthy nonsmoking adults. Bull. Eur. Physiopathol. Respir. 18:419–25
    [Google Scholar]
  21. 21. 
    Xu X, Laird N, Dockery DW, Schouten JP, Rijcken B, Weiss ST 1995. Age, period, and cohort effects on pulmonary function in a 24-year longitudinal study. Am. J. Epidemiol. 141:554–66
    [Google Scholar]
  22. 22. 
    Stam H, Hrachovina V, Stijnen T, Versprille A 1994. Diffusing capacity dependent on lung volume and age in normal subjects. J. Appl. Physiol. 76:2356–63
    [Google Scholar]
  23. 23. 
    Hardie JA, Vollmer WM, Buist AS, Ellingsen I, Morkve O 2004. Reference values for arterial blood gases in the elderly. Chest 125:2053–60
    [Google Scholar]
  24. 24. 
    Kronenberg RS, Drage CW. 1973. Attenuation of the ventilatory and heart rate responses to hypoxia and hypercapnia with aging in normal men. J. Clin. Investig. 52:1812–19
    [Google Scholar]
  25. 25. 
    Peterson DD, Pack AI, Silage DA, Fishman AP 1981. Effects of aging on ventilatory and occlusion pressure responses to hypoxia and hypercapnia. Am. Rev. Respir. Dis. 124:387–91
    [Google Scholar]
  26. 26. 
    Cardus J, Burgos F, Diaz O, Roca J, Barbera JA et al. 1997. Increase in pulmonary ventilation-perfusion inequality with age in healthy individuals. Am. J. Respir. Crit. Care Med. 156:648–53
    [Google Scholar]
  27. 27. 
    Mackay EH, Banks J, Sykes B, Lee G 1978. Structural basis for the changing physical properties of human pulmonary vessels with age. Thorax 33:335–44
    [Google Scholar]
  28. 28. 
    Emirgil C, Sobol BJ, Campodonico S, Herbert WH, Mechkati R 1967. Pulmonary circulation in the aged. J. Appl. Physiol. 23:631–40
    [Google Scholar]
  29. 29. 
    McClaran SR, Babcock MA, Pegelow DF, Reddan WG, Dempsey JA 1995. Longitudinal effects of aging on lung function at rest and exercise in healthy active fit elderly adults. J. Appl. Physiol. 78:1957–68
    [Google Scholar]
  30. 30. 
    O'Kroy JA, Lawler JM, Stone J, Babb TG 2000. Airflow limitation and control of end-expiratory lung volume during exercise. Respir. Physiol. 119:57–68
    [Google Scholar]
  31. 31. 
    McConnell AK, Davies CT. 1992. A comparison of the ventilatory responses to exercise of elderly and younger humans. J. Gerontol. 47:B137–41
    [Google Scholar]
  32. 32. 
    McConnell AK, Semple ES, Davies CT 1993. Ventilatory responses to exercise and carbon dioxide in elderly and younger humans. Eur. J. Appl. Physiol. Occup. Physiol. 66:332–37
    [Google Scholar]
  33. 33. 
    Whitsett JA, Alenghat T. 2015. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat. Immunol. 16:27–35
    [Google Scholar]
  34. 34. 
    Koval M. 2013. Differential pathways of claudin oligomerization and integration into tight junctions. Tissue Barriers 1:e24518
    [Google Scholar]
  35. 35. 
    Koval M. 2013. Claudin heterogeneity and control of lung tight junctions. Annu. Rev. Physiol. 75:551–67
    [Google Scholar]
  36. 36. 
    Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER 1982. Cell number and cell characteristics of the normal human lung. Am. Rev. Respir. Dis. 125:740–45
    [Google Scholar]
  37. 37. 
    Rogers DF. 1994. Airway goblet cells: responsive and adaptable front-line defenders. Eur. Respir. J. 7:1690–706
    [Google Scholar]
  38. 38. 
    Kotton DN, Morrisey EE. 2014. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat. Med. 20:822–32
    [Google Scholar]
  39. 39. 
    Yang Y, Riccio P, Schotsaert M, Mori M, Lu J et al. 2018. Spatial-temporal lineage restrictions of embryonic p63+ progenitors establish distinct stem cell pools in adult airways. Dev. Cell 44:752–61.e4
    [Google Scholar]
  40. 40. 
    Whitsett JA. 2018. Airway epithelial differentiation and mucociliary clearance. Ann. Am. Thorac. Soc. 15:S143–48
    [Google Scholar]
  41. 41. 
    Rose MC, Nickola TJ, Voynow JA 2001. Airway mucus obstruction: mucin glycoproteins, MUC gene regulation and goblet cell hyperplasia. Am. J. Respir. Cell Mol. Biol. 25:533–37
    [Google Scholar]
  42. 42. 
    Rose MC. 1992. Mucins: structure, function, and role in pulmonary diseases. Am. J. Physiol. 263:L413–29
    [Google Scholar]
  43. 43. 
    Rose MC, Brown CF, Jacoby JZ 3rd, Lynn WS, Kaufman B 1987. Biochemical properties of tracheobronchial mucins from cystic fibrosis and non-cystic fibrosis individuals. Pediatr. Res. 22:545–51
    [Google Scholar]
  44. 44. 
    Gum JR Jr 1992. Mucin genes and the proteins they encode: structure, diversity, and regulation. Am. J. Respir. Cell Mol. Biol. 7:557–64
    [Google Scholar]
  45. 45. 
    Voynow JA, Rubin BK. 2009. Mucins, mucus, and sputum. Chest 135:505–12
    [Google Scholar]
  46. 46. 
    Evans CM, Koo JS. 2009. Airway mucus: the good, the bad, the sticky. Pharmacol. Ther. 121:332–48
    [Google Scholar]
  47. 47. 
    Williams OW, Sharafkhaneh A, Kim V, Dickey BF, Evans CM 2006. Airway mucus: from production to secretion. Am. J. Respir. Cell Mol. Biol. 34:527–36
    [Google Scholar]
  48. 48. 
    Button B, Cai LH, Ehre C, Kesimer M, Hill DB et al. 2012. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337:937–41
    [Google Scholar]
  49. 49. 
    Rajavelu P, Chen G, Xu Y, Kitzmiller JA, Korfhagen TR, Whitsett JA 2015. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation. J. Clin. Investig. 125:2021–31
    [Google Scholar]
  50. 50. 
    Lambrecht BN, Hammad H. 2012. The airway epithelium in asthma. Nat. Med. 18:684–92
    [Google Scholar]
  51. 51. 
    Greene CM, McElvaney NG. 2005. Toll-like receptor expression and function in airway epithelial cells. Arch. Immunol. Ther. Exp. 53:418–27
    [Google Scholar]
  52. 52. 
    Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN 2009. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15:410–16
    [Google Scholar]
  53. 53. 
    Cleaver JO, You D, Michaud DR, Pruneda FA, Juarez MM et al. 2014. Lung epithelial cells are essential effectors of inducible resistance to pneumonia. Mucosal Immunol 7:78–88
    [Google Scholar]
  54. 54. 
    Ryu JH, Kim CH, Yoon JH 2010. Innate immune responses of the airway epithelium. Mol. Cells 30:173–83
    [Google Scholar]
  55. 55. 
    Parker D, Martin FJ, Soong G, Harfenist BS, Aguilar JL et al. 2011. Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract. MBio 2:e00016–1
    [Google Scholar]
  56. 56. 
    Parker D, Prince A. 2011. Type I interferon response to extracellular bacteria in the airway epithelium. Trends Immunol 32:582–88
    [Google Scholar]
  57. 57. 
    Zhu L, Lee PK, Lee WM, Zhao Y, Yu D, Chen Y 2009. Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway. Am. J. Respir. Cell Mol. Biol. 40:610–19
    [Google Scholar]
  58. 58. 
    Chen R, Lim JH, Jono H, Gu XX, Kim YS et al. 2004. Nontypeable Haemophilus influenzae lipoprotein P6 induces MUC5AC mucin transcription via TLR2-TAK1-dependent p38 MAPK-AP1 and IKKβ-IκBα-NF-κB signaling pathways. Biochem. Biophys. Res. Commun. 324:1087–94
    [Google Scholar]
  59. 59. 
    Bals R. 2000. Epithelial antimicrobial peptides in host defense against infection. Respir. Res. 1:141–50
    [Google Scholar]
  60. 60. 
    Choksi SP, Lauter G, Swoboda P, Roy S 2014. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 141:1427–41
    [Google Scholar]
  61. 61. 
    Wansleeben C, Bowie E, Hotten DF, Yu YR, Hogan BL 2014. Age-related changes in the cellular composition and epithelial organization of the mouse trachea. PLOS ONE 9:e93496
    [Google Scholar]
  62. 62. 
    Shivshankar P, Boyd AR, Le Saux CJ, Yeh IT, Orihuela CJ 2011. Cellular senescence increases expression of bacterial ligands in the lungs and is positively correlated with increased susceptibility to pneumococcal pneumonia. Aging Cell 10:798–806
    [Google Scholar]
  63. 63. 
    Ho JC, Chan KN, Hu WH, Lam WK, Zheng L et al. 2001. The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia. Am. J. Respir. Crit. Care Med. 163:983–88
    [Google Scholar]
  64. 64. 
    Proenca de Oliveira-Maul J, Barbosa de Carvalho H, Goto DM, Maia RM, Fló C et al. 2013. Aging, diabetes, and hypertension are associated with decreased nasal mucociliary clearance. Chest 143:1091–97
    [Google Scholar]
  65. 65. 
    Svartengren M, Falk R, Philipson K 2005. Long-term clearance from small airways decreases with age. Eur. Respir. J. 26:609–15
    [Google Scholar]
  66. 66. 
    Moliva JI, Rajaram MV, Sidiki S, Sasindran SJ, Guirado E et al. 2014. Molecular composition of the alveolar lining fluid in the aging lung. Age 36:9633
    [Google Scholar]
  67. 67. 
    Williams MC. 2003. Alveolar type I cells: molecular phenotype and development. Annu. Rev. Physiol. 65:669–95
    [Google Scholar]
  68. 68. 
    Castranova V, Rabovsky J, Tucker JH, Miles PR 1988. The alveolar type II epithelial cell: a multifunctional pneumocyte. Toxicol. Appl. Pharmacol. 93:472–83
    [Google Scholar]
  69. 69. 
    Fehrenbach H. 2001. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir. Res. 2:33–46
    [Google Scholar]
  70. 70. 
    Choi AM, Ryter SW, Levine B 2013. Autophagy in human health and disease. N. Engl. J. Med. 368:651–62
    [Google Scholar]
  71. 71. 
    Nakahira K, Choi AM. 2013. Autophagy: a potential therapeutic target in lung diseases. Am. J. Physiol. Lung Cell. Mol. Physiol. 305:L93–107
    [Google Scholar]
  72. 72. 
    Osorio F, Lambrecht B, Janssens S 2013. The UPR and lung disease. Semin. Immunopathol. 35:293–306
    [Google Scholar]
  73. 73. 
    Ryter SW, Cloonan SM, Choi AM 2013. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol. Cells 36:7–16
    [Google Scholar]
  74. 74. 
    Weaver TE, Whitsett JA. 1991. Function and regulation of expression of pulmonary surfactant-associated proteins. Biochem. J. 273:Part 2249–64
    [Google Scholar]
  75. 75. 
    Whitsett JA, Weaver TE. 2002. Hydrophobic surfactant proteins in lung function and disease. N. Engl. J. Med. 347:2141–48
    [Google Scholar]
  76. 76. 
    Zhang L, Ikegami M, Dey CR, Korfhagen TR, Whitsett JA 2002. Reversibility of pulmonary abnormalities by conditional replacement of surfactant protein D (SP-D) in vivo. J. Biol. Chem. 277:38709–13
    [Google Scholar]
  77. 77. 
    Trapnell BC, Whitsett JA. 2002. GM-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu. Rev. Physiol. 64:775–802
    [Google Scholar]
  78. 78. 
    McCormack FX, Whitsett JA. 2002. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J. Clin. Investig. 109:707–12
    [Google Scholar]
  79. 79. 
    Glasser SW, Maxfield MD, Ruetschilling TL, Akinbi HT, Baatz JE et al. 2013. Persistence of LPS-induced lung inflammation in surfactant protein-C-deficient mice. Am. J. Respir. Cell Mol. Biol. 49:845–54
    [Google Scholar]
  80. 80. 
    Yang L, Johansson J, Ridsdale R, Willander H, Fitzen M et al. 2010. Surfactant protein B propeptide contains a saposin-like protein domain with antimicrobial activity at low pH. J. Immunol. 184:975–83
    [Google Scholar]
  81. 81. 
    Ryan MA, Akinbi HT, Serrano AG, Perez-Gil J, Wu H et al. 2006. Antimicrobial activity of native and synthetic surfactant protein B peptides. J. Immunol. 176:416–25
    [Google Scholar]
  82. 82. 
    Augusto LA, Li J, Synguelakis M, Johansson J, Chaby R 2002. Structural basis for interactions between lung surfactant protein C and bacterial lipopolysaccharide. J. Biol. Chem. 277:23484–92
    [Google Scholar]
  83. 83. 
    Walski M, Pokorski M, Antosiewicz J, Rekawek A, Frontczak-Baniewicz M et al. 2009. Pulmonary surfactant: ultrastructural features and putative mechanisms of aging. J. Physiol. Pharmacol. 60:Suppl. 5121–25
    [Google Scholar]
  84. 84. 
    Alder JK, Barkauskas CE, Limjunyawong N, Stanley SE, Kembou F et al. 2015. Telomere dysfunction causes alveolar stem cell failure. PNAS 112:5099–104
    [Google Scholar]
  85. 85. 
    Grumelli S, Corry DB, Song LZ, Song L, Green L et al. 2004. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLOS Med 1:e8
    [Google Scholar]
  86. 86. 
    Sharma G, Hanania NA, Shim YM 2009. The aging immune system and its relationship to the development of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 6:573–80
    [Google Scholar]
  87. 87. 
    White ES. 2015. Lung extracellular matrix and fibroblast function. Ann. Am. Thorac. Soc. 12:Suppl. 1S30–33
    [Google Scholar]
  88. 88. 
    Sueblinvong V, Neveu WA, Neujahr DC, Mills ST, Rojas M et al. 2014. Aging promotes pro-fibrotic matrix production and increases fibrocyte recruitment during acute lung injury. Adv. Biosci. Biotechnol. 5:19–30
    [Google Scholar]
  89. 89. 
    Campisi J. 2005. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–22
    [Google Scholar]
  90. 90. 
    Parrinello S, Coppe JP, Krtolica A, Campisi J 2005. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J. Cell Sci. 118:485–96
    [Google Scholar]
  91. 91. 
    D'Errico A, Scarani P, Colosimo E, Spina M, Grigioni WF, Mancini AM 1989. Changes in the alveolar connective tissue of the ageing lung. An immunohistochemical study. Virchows Arch. A Pathol. Anat. Histopathol. 415:137–44
    [Google Scholar]
  92. 92. 
    Fulop T Jr, Douziech N, Jacob MP, Hauck M, Wallach J, Robert L. 2001. Age-related alterations in the signal transduction pathways of the elastin-laminin receptor. Pathol. Biol. 49:339–48
    [Google Scholar]
  93. 93. 
    Godin LM, Sandri BJ, Wagner DE, Meyer CM, Price AP et al. 2016. Decreased laminin expression by human lung epithelial cells and fibroblasts cultured in acellular lung scaffolds from aged mice. PLOS ONE 11:e0150966
    [Google Scholar]
  94. 94. 
    Shasby DM. 2007. Cell-cell adhesion in lung endothelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 292:L593–607
    [Google Scholar]
  95. 95. 
    Langer HF, Chavakis T. 2009. Leukocyte-endothelial interactions in inflammation. J. Cell Mol. Med. 13:1211–20
    [Google Scholar]
  96. 96. 
    Petri B, Phillipson M, Kubes P 2008. The physiology of leukocyte recruitment: an in vivo perspective. J. Immunol. 180:6439–46
    [Google Scholar]
  97. 97. 
    Jane-Wit D, Chun HJ. 2012. Mechanisms of dysfunction in senescent pulmonary endothelium. J. Gerontol. A Biol. Sci. Med. Sci. 67:236–41
    [Google Scholar]
  98. 98. 
    Prakash YS. 2016. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 311:L1113–40
    [Google Scholar]
  99. 99. 
    Damera G, Tliba O, Panettieri RA Jr 2009. Airway smooth muscle as an immunomodulatory cell. Pulm. Pharmacol. Ther. 22:353–59
    [Google Scholar]
  100. 100. 
    Yamamoto Y, Tanaka A, Kanamaru A, Tanaka S, Tsubone H et al. 2003. Morphology of aging lung in F344/N rat: alveolar size, connective tissue, and smooth muscle cell markers. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 272:538–47
    [Google Scholar]
  101. 101. 
    Marriott HM, Bingle CD, Read RC, Braley KE, Kroemer G et al. 2005. Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance. J. Clin. Investig. 115:359–68
    [Google Scholar]
  102. 102. 
    Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O'Garra A 1991. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147:3815–22
    [Google Scholar]
  103. 103. 
    Mosser DM, Zhang X. 2008. Interleukin-10: new perspectives on an old cytokine. Immunol. Rev. 226:205–18
    [Google Scholar]
  104. 104. 
    Hodge S, Hodge G, Scicchitano R, Reynolds PN, Holmes M 2003. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol. Cell Biol. 81:289–96
    [Google Scholar]
  105. 105. 
    Morimoto K, Janssen WJ, Terada M 2012. Defective efferocytosis by alveolar macrophages in IPF patients. Respir. Med. 106:1800–3
    [Google Scholar]
  106. 106. 
    Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A et al. 2012. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11:867–75
    [Google Scholar]
  107. 107. 
    Li Z, Jiao Y, Fan EK, Scott MJ, Li Y et al. 2017. Aging-impaired filamentous actin polymerization signaling reduces alveolar macrophage phagocytosis of bacteria. J. Immunol. 199:3176–86
    [Google Scholar]
  108. 108. 
    Wong CK, Smith CA, Sakamoto K, Kaminski N, Koff JL, Goldstein DR 2017. Aging impairs alveolar macrophage phagocytosis and increases influenza-induced mortality in mice. J. Immunol. 199:1060–68
    [Google Scholar]
  109. 109. 
    Shaw AC, Panda A, Joshi SR, Qian F, Allore HG, Montgomery RR 2011. Dysregulation of human Toll-like receptor function in aging. Ageing Res. Rev. 10:346–53
    [Google Scholar]
  110. 110. 
    Metcalf TU, Cubas RA, Ghneim K, Cartwright MJ, Grevenynghe JV et al. 2015. Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors. Aging Cell 14:421–32
    [Google Scholar]
  111. 111. 
    Plataki M, Cho SJ, Harris RM, Huang HR, Yun HS et al. 2019. Mitochondrial dysfunction in aged macrophages and lung during primary Streptococcus pneumoniae infection is improved with pirfenidone. Sci. Rep. 9:971
    [Google Scholar]
  112. 112. 
    Suzuki M, Betsuyaku T, Ito Y, Nagai K, Nasuhara Y et al. 2008. Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 39:673–82
    [Google Scholar]
  113. 113. 
    Agrawal A, Gupta S. 2011. Impact of aging on dendritic cell functions in humans. Ageing Res. Rev. 10:336–45
    [Google Scholar]
  114. 114. 
    Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S 2007. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J. Immunol. 178:6912–22
    [Google Scholar]
  115. 115. 
    Toapanta FR, Ross TM. 2009. Impaired immune responses in the lungs of aged mice following influenza infection. Respir. Res. 10:112
    [Google Scholar]
  116. 116. 
    Panda A, Qian F, Mohanty S, van Duin D, Newman FK et al. 2010. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J. Immunol. 184:2518–27
    [Google Scholar]
  117. 117. 
    Plowden J, Renshaw-Hoelscher M, Gangappa S, Engleman C, Katz JM, Sambhara S 2004. Impaired antigen-induced CD8+ T cell clonal expansion in aging is due to defects in antigen presenting cell function. Cell Immunol 229:86–92
    [Google Scholar]
  118. 118. 
    Chougnet CA, Thacker RI, Shehata HM, Hennies CM, Lehn MA et al. 2015. Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J. Immunol. 195:2624–32
    [Google Scholar]
  119. 119. 
    Silva MT, Correia-Neves M. 2012. Neutrophils and macrophages: the main partners of phagocyte cell systems. Front. Immunol. 3:174
    [Google Scholar]
  120. 120. 
    Chen MM, Palmer JL, Plackett TP, Deburghgraeve CR, Kovacs EJ 2014. Age-related differences in the neutrophil response to pulmonary pseudomonas infection. Exp. Gerontol. 54:42–46
    [Google Scholar]
  121. 121. 
    Corberand J, Ngyen F, Laharrague P, Fontanilles AM, Gleyzes B et al. 1981. Polymorphonuclear functions and aging in humans. J. Am. Geriatr. Soc. 29:391–97
    [Google Scholar]
  122. 122. 
    Brinkmann V, Zychlinsky A. 2007. Beneficial suicide: why neutrophils die to make NETs. Nat. Rev. Microbiol. 5:577–82
    [Google Scholar]
  123. 123. 
    Nomellini V, Brubaker AL, Mahbub S, Palmer JL, Gomez CR, Kovacs EJ 2012. Dysregulation of neutrophil CXCR2 and pulmonary endothelial icam-1 promotes age-related pulmonary inflammation. Aging Dis 3:234–47
    [Google Scholar]
  124. 124. 
    Fulop T Jr, Fouquet C, Allaire P, Perrin N, Lacombe G et al. 1997. Changes in apoptosis of human polymorphonuclear granulocytes with aging. Mech. Ageing Dev. 96:15–34
    [Google Scholar]
  125. 125. 
    Starr ME, Ueda J, Yamamoto S, Evers BM, Saito H 2011. The effects of aging on pulmonary oxidative damage, protein nitration, and extracellular superoxide dismutase down-regulation during systemic inflammation. Free Radic. Biol. Med. 50:371–80
    [Google Scholar]
  126. 126. 
    Zemans RL, Colgan SP, Downey GP 2009. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am. J. Respir. Cell Mol. Biol. 40:519–35
    [Google Scholar]
  127. 127. 
    Nogusa S, Ritz BW, Kassim SH, Jennings SR, Gardner EM 2008. Characterization of age-related changes in natural killer cells during primary influenza infection in mice. Mech. Ageing Dev. 129:223–30
    [Google Scholar]
  128. 128. 
    Beli E, Clinthorne JF, Duriancik DM, Hwang I, Kim S, Gardner EM 2011. Natural killer cell function is altered during the primary response of aged mice to influenza infection. Mech. Ageing Dev. 132:503–10
    [Google Scholar]
  129. 129. 
    Shehata HM, Hoebe K, Chougnet CA 2015. The aged nonhematopoietic environment impairs natural killer cell maturation and function. Aging Cell 14:191–99
    [Google Scholar]
  130. 130. 
    Pabst R, Tschernig T. 1995. Lymphocytes in the lung: an often neglected cell. Numbers, characterization and compartmentalization. Anat. Embryol. 92:293–99
    [Google Scholar]
  131. 131. 
    Haynes L, Swain SL. 2006. Why aging T cells fail: implications for vaccination. Immunity 24:663–66
    [Google Scholar]
  132. 132. 
    Kovaiou RD, Grubeck-Loebenstein B. 2006. Age-associated changes within CD4+ T cells. Immunol. Lett. 107:8–14
    [Google Scholar]
  133. 133. 
    Zhou X, McElhaney JE. 2011. Age-related changes in memory and effector T cells responding to influenza A/H3N2 and pandemic A/H1N1 strains in humans. Vaccine 29:2169–77
    [Google Scholar]
  134. 134. 
    Allie SR, Bradley JE, Mudunuru U, Schultz MD, Graf BA et al. 2019. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol. 20:97–108
    [Google Scholar]
  135. 135. 
    Holodick NE, Rothstein TL. 2015. B cells in the aging immune system: time to consider B-1 cells. Ann. N. Y. Acad. Sci. 1362:176–87
    [Google Scholar]
  136. 136. 
    Comhair SA, Erzurum SC. 2002. Antioxidant responses to oxidant-mediated lung diseases. Am. J. Physiol. Lung Cell. Mol. Physiol. 283:L246–55
    [Google Scholar]
  137. 137. 
    van Durme Y, Verhamme KMC, Stijnen T, van Rooij FJA, Van Pottelberge GR et al. 2009. Prevalence, incidence, and lifetime risk for the development of COPD in the elderly: the Rotterdam study. Chest 135:368–77
    [Google Scholar]
  138. 138. 
    Wu X, Yuan B, Lopez E, Bai C, Wang X 2014. Gene polymorphisms and chronic obstructive pulmonary disease. J. Cell Mol. Med. 18:15–26
    [Google Scholar]
  139. 139. 
    Brandsma CA, de Vries M, Costa R, Woldhuis RR, Konigshoff M, Timens W 2017. Lung ageing and COPD: Is there a role for ageing in abnormal tissue repair. Eur. Respir. Rev. 26:170073
    [Google Scholar]
  140. 140. 
    Incalzi RA, Maini CL, Fuso L, Giordano A, Carbonin PU, Galli G 1989. Effects of aging on mucociliary clearance. Compr. Gerontol. A 3:Suppl.65–68
    [Google Scholar]
  141. 141. 
    Lederer DJ, Martinez FJ. 2018. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 378:1811–23
    [Google Scholar]
  142. 142. 
    Katzenstein AL, Mukhopadhyay S, Myers JL 2008. Diagnosis of usual interstitial pneumonia and distinction from other fibrosing interstitial lung diseases. Hum. Pathol. 39:1275–94
    [Google Scholar]
  143. 143. 
    Xie N, Tan Z, Banerjee S, Cui H, Ge J et al. 2015. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 192:1462–74
    [Google Scholar]
  144. 144. 
    Cho SJ, Moon JS, Lee CM, Choi AM, Stout-Delgado HW 2017. Glucose transporter 1-dependent glycolysis is increased during aging-related lung fibrosis, and phloretin inhibits lung fibrosis. Am. J. Respir. Cell Mol. Biol. 56:521–31
    [Google Scholar]
  145. 145. 
    Selman M, Pardo A. 2014. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model. Am. J. Respir. Crit. Care Med. 189:1161–72
    [Google Scholar]
  146. 146. 
    Ely EW, Wheeler AP, Thompson BT, Ancukiewicz M, Steinberg KP, Bernard GR 2002. Recovery rate and prognosis in older persons who develop acute lung injury and the acute respiratory distress syndrome. Ann. Intern. Med. 136:25–36
    [Google Scholar]
  147. 147. 
    Siner JM, Pisani MA. 2007. Mechanical ventilation and acute respiratory distress syndrome in older patients. Clin. Chest Med. 28:783–91
    [Google Scholar]
  148. 148. 
    Bruunsgaard H, Skinhøj P, Qvist J, Pedersen BK 1999. Elderly humans show prolonged in vivo inflammatory activity during pneumococcal infections. J. Infect. Dis. 180:551–54
    [Google Scholar]
  149. 149. 
    Al-Shaer MH, Choueiri NE, Correia ML, Sinkey CA, Barenz TA, Haynes WG 2006. Effects of aging and atherosclerosis on endothelial and vascular smooth muscle function in humans. Int. J. Cardiol. 109:201–6
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034610
Loading
/content/journals/10.1146/annurev-physiol-021119-034610
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error