Skip to main content

Advertisement

Log in

CD147 augmented monocarboxylate transporter-1/4 expression through modulation of the Akt-FoxO3-NF-κB pathway promotes cholangiocarcinoma migration and invasion

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cholangiocarcinoma (CCA) is an aggressive type of cancer. The major obstacles for treatment are its late presentation and the occurrence metastases. Targeting the metastatic process may serve as a treatment option. CD147 is a membrane protein that promotes CCA metastasis. High lactate levels in CCA are predicted to result from lactate dehydrogenase A expression and sensitivity to monocarboxylate transporter (MCT) inhibitors. An involvement of CD147 in MCT maturation has been reported, but the exact role of MCT in CCA is not clear. Here, we aimed to assess the mechanism of CD147-promoted CCA progression through MCT regulation.

Methods

The expression levels of CD147 and MCT-1/4 in human CCA tissues were determined by immunohistochemistry. Two CD147 knockout (CD147 KO) CCA cell (KKU-213) clones were established using the CRISPR/Cas9 system. Cell migration and invasion were determined using a Boyden chamber assay. Temporal protein levels were modified by siRNA, specific inhibitors and/or activators. The expression of target proteins was determined using Western blot analyses.

Results

CD147 and MCT-1/4 were found to be overexpressed in CCA tissues compared to normal bile duct tissues. In addition, we found that CD147 knockdown significantly alleviated CCA cell migration and invasion, concomitant with decreased pAkt, pFoxO3, pNF-κB (pp65) and MCT-1/4 levels. Conversely, we found that FoxO3 knockdown led to recovered migration/invasion abilities and increased pp65 and MCT-1/4 expression levels. The involvement of Akt in the regulation of MCT-1/4 expression through CD147 was established by inhibition and activation of Akt phosphorylation.

Conclusion

Our data indicate that CD147 promotes the malignant progression of CCA cells by activating the Akt-FoxO3-NF-κB-MCT-1/4 axis. As such, CD147 may serve as a possible target for advanced CCA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B (PKB)

CCA:

Cholangiocarcinoma

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9

DMEM:

Dulbecco’s modified Eagle’s medium

DHMEQ:

Dehydroxymethylepoxyquinomicin

EMT:

Epithelial-mesenchymal transition

Fox:

Forkhead protein

IHC:

Immunohistochemistry

CD147 KO:

CD147 knockout

HRP:

Horseradish peroxidase

MCT:

Monocarboxylate transporter

References

  1. B. Sripa, C. Pairojkul, Cholangiocarcinoma: Lessons from Thailand. Curr Opin Gastroenterol 24, 349–356 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  2. N.F. Esnaola, J.E. Meyer, A. Karachristos, J.L. Maranki, E.R. Camp, C.S. Denlinger, Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma. Cancer 122, 1349–1369 (2016)

    Article  PubMed  Google Scholar 

  3. S.A. Khan, B.R. Davidson, R.D. Goldin, N. Heaton, J. Karani, S.P. Pereira, W.M. Rosenberg, P. Tait, S.D. Taylor-Robinson, A.V. Thillainayagam, H.C. Thomas, H. Wasan, G. British, Society of, guidelines for the diagnosis and treatment of cholangiocarcinoma: An update. Gut 61(1657-1669) (2012)

  4. O. Warburg, Iron, the oxygen-carrier of respiration-ferment. Science 61, 575–582 (1925)

    Article  CAS  PubMed  Google Scholar 

  5. G. van Niekerk, A.M. Engelbrecht, Role of PKM2 in directing the metabolic fate of glucose in cancer: A potential therapeutic target. Cell Oncol 41, 343–351 (2018)

    Article  CAS  Google Scholar 

  6. C. Pinheiro, A. Longatto-Filho, J. Azevedo-Silva, M. Casal, F.C. Schmitt, F. Baltazar, Role of monocarboxylate transporters in human cancers: State of the art. J Bioenerg Biomembr 44, 127–139 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. P. Kirk, M.C. Wilson, C. Heddle, M.H. Brown, A.N. Barclay, A.P. Halestrap, CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J 19, 3896–3904 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. P. Fisel, E. Schaeffeler, M. Schwab, Clinical and functional relevance of the monocarboxylate transporter family in disease pathophysiology and drug therapy. Clin Transl Sci 11, 352-364 (2018)

  9. W. Schneiderhan, M. Scheler, K.H. Holzmann, M. Marx, J.E. Gschwend, M. Bucholz, T.M. Gress, T. Seufferlein, G. Adler, F. Oswald, CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 58, 1391–1398 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. J. Hao, H. Chen, M.C. Madigan, P.J. Cozzi, J. Beretov, W. Xiao, W.J. Delprado, P.J. Russell, Y. Li, Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br J Cancer 103, 1008–1018 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. C. Biswas, Tumor cell stimulation of collagenase production by fibroblasts. Biochem Biophys Res Commun 109, 1026–1034 (1982)

    Article  CAS  PubMed  Google Scholar 

  12. Z.D. Han, X.C. Bi, W.J. Qin, H.C. He, Q.S. Dai, J. Zou, Y.K. Ye, Y.X. Liang, G.H. Zeng, Z.N. Chen, W.D. Zhong, CD147 expression indicates unfavourable prognosis in prostate cancer. Pathol Oncol Res 15, 369–374 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. S. Zhu, D. Chu, Y. Zhang, X. Wang, L. Gong, X. Han, L. Yao, M. Lan, Y. Li, W. Zhang, EMMPRIN/CD147 expression is associated with disease-free survival of patients with colorectal cancer. Med Oncol 30, 369 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. K.D. Curtin, I.A. Meinertzhagen, R.J. Wyman, Basigin (EMMPRIN/CD147) interacts with integrin to affect cellular architecture. J Cell Sci 118, 2649–2660 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. P. Zhao, W. Zhang, S.J. Wang, X.L. Yu, J. Tang, W. Huang, Y. Li, H.Y. Cui, Y.S. Guo, J. Tavernier, S.H. Zhang, J.L. Jiang, Z.N. Chen, HAb18G/CD147 promotes cell motility by regulating annexin II-activated RhoA and Rac1 signaling pathways in hepatocellular carcinoma cells. Hepatology 54, 2012–2024 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. C. Biswas, Y. Zhang, R. DeCastro, H. Guo, T. Nakamura, H. Kataoka, K. Nabeshima, The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 55, 434–439 (1995)

    CAS  PubMed  Google Scholar 

  17. A.P. Halestrap, M.C. Wilson, The monocarboxylate transporter family--role and regulation. IUBMB Life 64, 109–119 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. P. Huang, S. Chang, X. Jiang, J. Su, C. Dong, X. Liu, Z. Yuan, Z. Zhang, H. Liao, RNA interference targeting CD147 inhibits the proliferation, invasiveness, and metastatic activity of thyroid carcinoma cells by down-regulating glycolysis. Int J Clin Exp Pathol 8, 309–318 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. D.M. Voss, R. Spina, D.L. Carter, K.S. Lim, C.J. Jeffery, E.E. Bar, Disruption of the monocarboxylate transporter-4-basigin interaction inhibits the hypoxic response, proliferation, and tumor progression. Sci Rep 7, 4292 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P. Dana, R. Kariya, K. Vaeteewoottacharn, K. Sawanyawisuth, W. Seubwai, K. Matsuda, S. Okada, S. Wongkham, Upregulation of CD147 promotes metastasis of cholangiocarcinoma by modulating the epithelial-to-mesenchymal transitional process. Oncol Res 25, 1047–1059 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  21. U. Thonsri, W. Seubwai, S. Waraasawapati, K. Sawanyawisuth, K. Vaeteewoottacharn, T. Boonmars, U. Cha'on, Overexpression of lactate dehydrogenase a in cholangiocarcinoma is correlated with poor prognosis. Histol Histopathol 32, 503–510 (2017)

    CAS  PubMed  Google Scholar 

  22. U. Thamrongwaranggoon, W. Seubwai, C. Phoomak, S. Sangkhamanon, U. Cha'on, T. Boonmars, S. Wongkham, Targeting hexokinase II as a possible therapy for cholangiocarcinoma. Biochem Biophys Res Commun 484, 409–415 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. S. Obchoei, S.M. Weakley, S. Wongkham, C. Wongkham, K. Sawanyawisuth, Q. Yao, C. Chen, Cyclophilin a enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. Mol Cancer 10, 102 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. B. Sripa, S. Leungwattanawanit, T. Nitta, C. Wongkham, V. Bhudhisawasdi, A. Puapairoj, C. Sripa, M. Miwa, Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100). World J Gastroenterol 11, 3392–3397 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  25. G. Matsumoto, J. Namekawa, M. Muta, T. Nakamura, H. Bando, K. Tohyama, M. Toi, K. Umezawa, Targeting of nuclear factor kappaB pathways by dehydroxymethylepoxyquinomicin, a novel inhibitor of breast carcinomas: Antitumor and antiangiogenic potential in vivo. Clin Cancer Res 11, 1287–1293 (2005)

    CAS  PubMed  Google Scholar 

  26. Y. Naito, K. Hino, H. Bono, K. Ui-Tei, CRISPRdirect: Software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120–1123 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. L.S. Silva, L.G. Goncalves, F. Silva, G. Domingues, V. Maximo, J. Ferreira, E.W. Lam, S. Dias, A. Felix, J. Serpa, STAT3:FOXM1 and MCT1 drive uterine cervix carcinoma fitness to a lactate-rich microenvironment. Tumour Biol 37, 5385–5395 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. A. Borthakur, S. Saksena, R.K. Gill, W.A. Alrefai, K. Ramaswamy, P.K. Dudeja, Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: Involvement of NF-kappaB pathway. J Cell Biochem 103, 1452–1463 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Z. Tan, N. Xie, S. Banerjee, H. Cui, M. Fu, V.J. Thannickal, G. Liu, The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. J Biol Chem 290, 46–55 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. W. Seubwai, C. Wongkham, A. Puapairoj, N. Khuntikeo, A. Pugkhem, C. Hahnvajanawong, J. Chaiyagool, K. Umezawa, S. Okada, S. Wongkham, Aberrant expression of NF-kappaB in liver fluke associated cholangiocarcinoma: Implications for targeted therapy. PLoS One 9, e106056 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  31. M.G. Thompson, M. Larson, A. Vidrine, K. Barrios, F. Navarro, K. Meyers, P. Simms, K. Prajapati, L. Chitsike, L.M. Hellman, B.M. Baker, S.K. Watkins, FOXO3-NF-kappaB RelA protein complexes reduce Proinflammatory cell signaling and function. J Immunol 195, 5637–5647 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C.Y. Sasaki, T.J. Barberi, P. Ghosh, D.L. Longo, Phosphorylation of RelA/p65 on serine 536 defines an I{kappa}B{alpha}-independent NF-{kappa}B pathway. J Biol Chem 280, 34538–34547 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. G. Tzivion, M. Dobson, G. Ramakrishnan, FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 1813, 1938–1945 (2011)

    Article  CAS  PubMed  Google Scholar 

  34. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. H. Izumi, M. Takahashi, H. Uramoto, Y. Nakayama, T. Oyama, K.Y. Wang, Y. Sasaguri, S. Nishizawa, K. Kohno, Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells. Cancer Sci 102, 1007–1013 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. S.C. Kong, A. Nohr-Nielsen, K. Zeeberg, S.J. Reshkin, E.K. Hoffmann, I. Novak, S.F. Pedersen, Monocarboxylate transporters MCT1 and MCT4 regulate migration and invasion of pancreatic ductal adenocarcinoma cells. Pancreas 45, 1036–1047 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. V. Miranda-Goncalves, M. Honavar, C. Pinheiro, O. Martinho, M.M. Pires, C. Pinheiro, M. Cordeiro, G. Bebiano, P. Costa, I. Palmeirim, R.M. Reis, F. Baltazar, Monocarboxylate transporters (MCTs) in gliomas: Expression and exploitation as therapeutic targets. Neuro-Oncology 15, 172–188 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Zhang, B. Gan, D. Liu, J.H. Paik, FoxO family members in cancer. Cancer Biol Ther 12, 253–259 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. N. Tanaka, M. Zhao, L. Tang, A.A. Patel, Q. Xi, H.T. Van, H. Takahashi, A.A. Osman, J. Zhang, J. Wang, J.N. Myers, G. Zhou, Gain-of-function mutant p53 promotes the oncogenic potential of head and neck squamous cell carcinoma cells by targeting the transcription factors FOXO3a and FOXM1. Oncogene 37, 1279–1292 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. E.L. Greer, A. Brunet, FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. D. Ni, X. Ma, H.Z. Li, Y. Gao, X.T. Li, Y. Zhang, Q. Ai, P. Zhang, E.L. Song, Q.B. Huang, Y. Fan, X. Zhang, Downregulation of FOXO3a promotes tumor metastasis and is associated with metastasis-free survival of patients with clear cell renal cell carcinoma. Clin Cancer Res 20, 1779–1790 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. A. Brunet, A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, M.J. Anderson, K.C. Arden, J. Blenis, M.E. Greenberg, Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999)

    Article  CAS  PubMed  Google Scholar 

  43. S. Yothaisong, H. Dokduang, A. Techasen, N. Namwat, P. Yongvanit, V. Bhudhisawasdi, A. Puapairoj, G.J. Riggins, W. Loilome, Increased activation of PI3K/AKT signaling pathway is associated with cholangiocarcinoma metastasis and PI3K/mTOR inhibition presents a possible therapeutic strategy. Tumour Biol 34, 3637–3648 (2014)

    Article  CAS  Google Scholar 

  44. L. Luron, D. Saliba, K. Blazek, A. Lanfrancotti, I.A. Udalova, FOXO3 as a new IKK-epsilon-controlled check-point of regulation of IFN-beta expression. Eur J Immunol 42, 1030–1037 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. Z. Wang, T. Yu, P. Huang, Post-translational modifications of FOXO family proteins (Review). Mol Med Rep 14, 4931–4941 (2016)

    Article  CAS  PubMed  Google Scholar 

  46. E.E. Santo, P. Stroeken, P.V. Sluis, J. Koster, R. Versteeg, E.M. Westerhout, FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma. Cancer Res 73, 2189–2198 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. H. Jo, S. Mondal, D. Tan, E. Nagata, S. Takizawa, A.K. Sharma, Q. Hou, K. Shanmugasundaram, A. Prasad, J.K. Tung, A.O. Tejeda, H. Man, A.C. Rigby, H.R. Luo, Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc Natl Acad Sci U S A 109, 10581–10586 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  48. M. Tang, Y. Zhao, N. Liu, E. Chen, Z. Quan, X. Wu, C. Luo, Overexpression of HepaCAM inhibits bladder cancer cell proliferation and viability through the AKT/FoxO pathway. J Cancer Res Clin Oncol 143, 793–805 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. D. Xu, M.E. Hemler, Metabolic activation-related CD147-CD98 complex. Mol Cell Proteomics 4, 1061–1071 (2005)

    Article  CAS  PubMed  Google Scholar 

  50. F. Fei, X. Li, L. Xu, D. Li, Z. Zhang, X. Guo, H. Yang, Z. Chen, J. Xing, CD147-CD98hc complex contributes to poor prognosis of non-small cell lung cancer patients through promoting cell proliferation via the PI3K/Akt signaling pathway. Ann Surg Oncol 21, 4359–4368 (2014)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Brett Stringer for LentiCRISPRv2 puro, Prof. Didier Trono for pCMVR8.74 and pMD2.G, Prof. Kazuo Umezawa, Aichi Medical University, Japan for providing DHMEQ and Prof. James A Will for editing this manuscript via the KKU Publication Clinic, Khon Kaen University, Thailand.

Funding

This project was supported by a TRF-MRC (Newton fund) project grant to C. Pairojkul (DBG5980004), TRF Senior Research Scholar Grant to S. Wongkham (RTA5780012) and Khon Kaen University, Thailand (#KKU61003502 to K. Vaeteewoottacharn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kulthida Vaeteewoottacharn.

Ethics declarations

Competing interests

The authors declare no potential conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were conducted in accordance with the ethical standards of the Institutional Research Committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Human CCA tissues were obtained from the specimen bank of the Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand. The patients had undergone liver resection at Srinagarind Hospital, Thailand. Informed patient consents were obtained prior to initiation of the study. The research protocol (#HE571283 and #HE581369) was approved by the Human Research Ethics Committee at Khon Kaen University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1

Characteristics of CD147 KO clones. (a) Morphologies of WT and CD147 KO cell clones. (b) Invasion and (c) proliferation abilities of CD147 KO cell clones. (d) MMP activities of CD147 KO cell clones and WT measured by gelatin zymography. (e) FoxO3 nuclear localization in CD147 KO cell clones and WT cells determined by immunofluorescence staining. Hoechst 33342 (Hoechst) was used as nuclear staining dye. (PPTX 647 kb)

Figure S2

Effect of PI3K inhibition on Akt phosphorylation and MCT-4 expression. The expression of CD147, PI3K, pAkt, Akt and MCT-4 was assessed in LY294002-treated KKU-213 cells (0-24 h). β-actin was used as loading control. (PPTX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dana, P., Saisomboon, S., Kariya, R. et al. CD147 augmented monocarboxylate transporter-1/4 expression through modulation of the Akt-FoxO3-NF-κB pathway promotes cholangiocarcinoma migration and invasion. Cell Oncol. 43, 211–222 (2020). https://doi.org/10.1007/s13402-019-00479-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-019-00479-3

Keywords

Navigation