Skip to main content
Log in

Hierarchical-Clustering, Scaffold-Mining Exercises and Dynamics Simulations for Effectual Inhibitors Against Lipid-A Biosynthesis of Helicobacter pylori

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Treatment failures of standard regimens and new strains egression are due to the augmented drug resistance conundrum. These confounding factors now became the drug designers spotlight to implement therapeutics against Helicobacter pylori strains and to safeguard infected victims with devoid of adverse drug reactions. Thereby, to navigate the chemical space for medicine, paramount vital drug target opting considerations should be imperative. The study is therefore aimed to develop potent therapeutic variants against an insightful extrapolative, common target LpxC as a follow-up to previous studies.

Methods

We explored the relationships between existing inhibitors and novel leads at the scaffold level in an appropriate conformational plasticity for lead-optimization campaign. Hierarchical-clustering and shape-based screening against an in-house library of > 21 million compounds resulted in panel of 11,000 compounds. Rigid-receptor docking through virtual screening cascade, quantum-polarized-ligand, induced-fit dockings, post-docking processes and system stability assessments were performed.

Results

After docking experiments, an enrichment performance unveiled seven ranked actives better binding efficiencies with Zinc-binding potency than substrate and in-actives (decoy-set) with ROC (1.0) and area under accumulation curve (0.90) metrics. Physics-based membrane permeability accompanied ADME/T predictions and long-range dynamic simulations of 250 ns chemical time have depicted good passive diffusion with no toxicity of leads and sustained consistency of lead1-LpxC in the physiological milieu respectively.

Conclusions

In the study, as these static outcomes obtained from this approach competed with the substrate and existing ligands in binding affinity estimations as well as positively correlated from different aspects of predictions, which could facilitate promiscuous new chemical entities against H. pylori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

DOPE:

Discrete optimized protein energy

OPLS_AA:

Optimized potential for liquid simulations for all atoms

VSW:

Virtual screening workflow

RRD:

Rigid receptor docking

QPLD:

Quantum polarized ligand docking

IFD:

Induced fit docking

ROC:

Receiver operating characteristic (ROC)

AUC:

Area under the curve

MM/GBSA:

Molecular mechanics/generalized born surface area

RMSD:

Root-mean-square deviation

RMSF:

Root mean square fluctuation

PE:

Potential energy

LBFGS:

Limited memory Broyden-Fletcher-Goldfarb-Shanno

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool. J Mol Biol 215:403–410, 1990.

    Article  Google Scholar 

  2. Barb, A. W., T. M. Leavy, L. I. Robins, Z. Guan, D. A. Six, P. Zhou, M. J. Hangauer, C. R. Bertozzi, and C. R. Raetz. Uridine-based inhibitors as new leads for antibiotics targeting Escherichia coli LpxC. Biochemistry. 48(14):3068–3077, 2009.

    Article  Google Scholar 

  3. Buetow, L., A. Dawson, and W. N. Hunter. The nucleotide-binding site of Aquifex aeolicus LpxC. Acta Crystallogr Sect F Struct Biol Cryst Commun 62(Pt11):1082–1086, 2006.

    Article  Google Scholar 

  4. Castrignanò, T., P. D. De Meo, D. Cozzetto, I. G. Talamo, and A. Tramontano. The PMDB protein model database. Nucleic Acids Res 34(Database issue):D306–D309, 2006.

    Article  Google Scholar 

  5. Cho, A. E., V. Guallar, B. J. Berne, and R. Friesner. Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem. 26:915–931, 2005.

    Article  Google Scholar 

  6. Cuny, G. D. A new class of UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase (LpxC) inhibitors for the treatment of Gram-negative infections: PCT application WO 2008027466. Expert Opin Ther Pat 19(6):893–899, 2009.

    Article  MathSciNet  Google Scholar 

  7. De Francesco, V., F. Giorgio, C. Hassan, G. Manes, L. Vannella, C. Panella, E. Ierardi, and A. Zullo. Worldwide H. pylori antibiotic resistance: a systematic review. J Gastrointestin Liver Dis. 19(4):409–414, 2010.

    Google Scholar 

  8. Del Giudice, G., P. Malfertheiner, and R. Rappuoli. Development of vaccines against Helicobacter pylori. Expert Rev Vaccines 8(8):1037–1049, 2009.

    Article  Google Scholar 

  9. Delano, W. L. PYMOL. San Carlos: DeLano Scientific LLC, 2002.

    Google Scholar 

  10. Du, J., H. Sun, L. Xi, J. Li, Y. Yang, H. Liu, and X. Yao. Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and Prime/ MMGBSA calculation. J Comput Chem. 13:2800–2809, 2011.

    Article  Google Scholar 

  11. Eisenberg, D., R. Lüthy, and J. U. Bowie. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 277:396–404, 1997.

    Article  Google Scholar 

  12. Farid, R., T. Day, R. A. Friesner, and R. A. Pearlstein. New insights about HERG blockade obtained from protein modeling potential energy mapping and docking studies. Bioorg Med Chem. 14(9):3160–3173, 2006.

    Article  Google Scholar 

  13. Friesner, R. A., J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis, and P. S. Shenkin. Glide: a new approach for rapid accurate docking and scoring 1 Method and assessment of docking accuracy. J Med Chem. 47(7):1739–1749, 2004.

    Article  Google Scholar 

  14. Gerrits, M. M., A. H. van Vliet, E. J. Kuipers, and J. G. Kusters. Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implications. Lancet Infect Dis 6(11):699–709, 2006.

    Article  Google Scholar 

  15. Ghotaslou, R., H. E. Leylabadlo, and Y. M. Asl. Prevalence of antibiotic resistance in Helicobacter pylori: a recent literature review. World J Methodol. 5(3):164–174, 2015.

    Article  Google Scholar 

  16. Graham, D. Y. Antibiotic resistance in Helicobacter pylori: implications for therapy. Gastroenterology 115(5):1272–1277, 1998.

    Article  Google Scholar 

  17. Huang, N., B. K. Shoichet, and J. J. Irwin. Benchmarking sets for molecular docking. J Med Chem. 49:6789–6801, 2006.

    Article  Google Scholar 

  18. Jackman, J. E., C. R. Raetz, and C. A. Fierke. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry. 38(6):1902–1911, 1999.

    Article  Google Scholar 

  19. Jorgensen, W. L., and E. M. Duffy. Prediction of drug solubility from structure. Adv Drug Deliv Rev. 54:355–366, 2002.

    Article  Google Scholar 

  20. Kalinin, D. V., and R. Holl. Insights into the zinc-dependent deacetylase LpxC: biochemical properties and inhibitor design. Curr Top Med Chem 16(21):2379–2430, 2016.

    Article  Google Scholar 

  21. Kalinin, D. V., and R. Holl. LpxC inhibitors: a patent review (2010-2016). Expert Opin Ther Pat. 27(11):1227–1250, 2017.

    Article  Google Scholar 

  22. Kelley, L. A., S. P. Gardner, and M. J. Sutcliffe. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng. 9(11):1063–1065, 1996.

    Article  Google Scholar 

  23. Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291, 1993.

    Article  Google Scholar 

  24. Lee, C. J., X. Liang, Q. Wu, J. Najeeb, J. Zhao, R. Gopalaswamy, M. Titecat, F. Sebbane, N. Lemaitre, E. J. Toone, and P. Zhou. Drug design from the cryptic inhibitor envelope. Nat Commun. 7:10638, 2016.

    Article  Google Scholar 

  25. Lipinski, C. A., and A. Hopkins. Navigating chemical space for biology and medicine. Nature. 432:855–861, 2004.

    Article  Google Scholar 

  26. Lipinski, C. A., F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 46:3–26, 2001.

    Article  Google Scholar 

  27. Liu, F., and S. Ma. Recent process in the inhibitors of UDP-3-O-(R-3-hydroxyacyl)-nacetylglucosamine deacetylase (LpxC) against gram-negative bacteria. Mini Rev Med Chem. 18(4):310–323, 2018.

    Article  Google Scholar 

  28. Mochalkin, I., J. D. Knafels, and S. Lightle. Crystal structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor. Protein Sci. 17(3):450–457, 2008.

    Article  Google Scholar 

  29. Morgan, D. R., J. Torres, R. Sexton, R. Herrero, E. Salazar-Martínez, E. R. Greenberg, L. E. Bravo, R. L. Dominguez, C. Ferreccio, E. C. Lazcano-Ponce, M. M. Meza-Montenegro, E. M. Peña, R. Peña, P. Correa, M. E. Martínez, W. D. Chey, M. Valdivieso, G. L. Anderson, G. E. Goodman, J. J. Crowley, and L. H. Baker. risk of recurrent Helicobacter pylori infection 1 year after initial eradication therapy in 7 Latin American communities. JAMA 309(6):578–586, 2013.

    Article  Google Scholar 

  30. O’Connor, A., C. A. O’Morain, and A. C. Ford. Population screening and treatment of Helicobacter pylori infection. Nat Rev Gastroenterol Hepatol. 14(4):230–240, 2017.

    Article  Google Scholar 

  31. Park, K., N. K. Sung, and A. E. Cho. Importance of accurate charges in binding affinity calculations: a case of neuraminidase series. Bull Korean Chem Soc. 34(2):545–548, 2013.

    Article  Google Scholar 

  32. Pasala, C., C. S. R. Chilamakuri, S. K. Katari, R. M. Nalamolu, A. R. Bitla, and A. Umamaheswari. An in silico study: Novel targets for potential drug and vaccine design against drug resistant H. pylori. Microb Pathog. 122:156–161, 2018.

    Article  Google Scholar 

  33. Pradhan, D., V. Priyadarshini, M. Munikumar, S. Swargam, A. Umamaheswari, and A. Bitla. Para-(benzoyl)-phenylalanine as a potential inhibitor against LpxC of Leptospira spp: homology modeling docking and molecular dynamics study. J Biomol Struct Dyn 32(2):171–185, 2014.

    Article  Google Scholar 

  34. Ramsay, R. R., and K. F. Tipton. Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules. 22(7):E1192, 2017.

    Article  Google Scholar 

  35. Rezai, T., B. Yu, G. L. Millhauser, M. P. Jacobson, and R. S. Lokey. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J Am Chem Soc. 128(8):2510–2511, 2006.

    Article  Google Scholar 

  36. Sherman, W., T. Day, M. P. Jacobson, R. A. Friesner, and R. Farid. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem. 49(2):534–553, 2006.

    Article  Google Scholar 

  37. Silver, L. L. Appropriate targets for antibacterial drugs cold spring. Harb Perspect Med 6(12):a030239, 2016.

    Article  Google Scholar 

  38. Truchon, J. F., and C. I. Bayly. Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J Chem Inf Model. 47(2):488–508, 2007.

    Article  Google Scholar 

  39. Umamaheswari, A., D. Pradhan, and M. Hemanthkumar. Virtual screening for potential inhibitors of homology modeled Leptospira interrogans MurD ligase. J Chem Biol. 3:175–187, 2010.

    Article  Google Scholar 

  40. Umamaheswari, A., D. Pradhan, and M. Hemanthkumar. Identification of potential Leptospiraphosphoheptose isomerase inhibitors through virtual high throughput screening. Genomics Proteomics Bioinformatics. 8:246–255, 2010.

    Article  Google Scholar 

  41. Wallner, B., and A. Elofsson. Can correct protein models be identified? Protein Sci. 12(5):1073–1086, 2003.

    Article  Google Scholar 

  42. Webb, B., and A. Sali. Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics. 47:561–563, 2014.

    Article  Google Scholar 

  43. Westbrook, J. D., C. Shao, Z. Feng, M. Zhuravleva, S. Velankar, and J. Young. The chemical component dictionary: complete descriptions of constituent molecules in experimentally determined 3D macromolecules in the Protein Data Bank. Bioinformatics. 31(8):1274–1278, 2015.

    Article  Google Scholar 

  44. Wiederstein, M., and M. J. Sippl. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35:W407–W410, 2007.

    Article  Google Scholar 

  45. Wueppenhorst, N., H. P. Stueger, M. Kist, and E. Glocker. Identification and molecular characterization of triple- and quadruple-resistant Helicobacter pylori clinical isolates in Germany. J Antimicrob Chemother. 63(4):648–653, 2009.

    Article  Google Scholar 

  46. Zeng, D., J. Zhao, H. S. Chung, Z. Guan, C. R. Raetz, and P. Zhou. Mutants resistant to LpxC inhibitors by rebalancing cellular homeostasis. J Biol Chem 288(8):5475–5486, 2013.

    Article  Google Scholar 

  47. Zullo, A., C. Hassan, L. Ridola, A. Repici, R. Manta, and A. Andriani. Gastric MALT lymphoma: old and new insights. Ann Gastroenterol 27(1):27–33, 2014.

    Google Scholar 

Download references

Acknowledgments

PC acknowledges to ICMR, New Delhi, for supporting him with the Senior Research Fellowship (3/1/3/JRF-2014/HRD-8). Authors are highly thankful to DBT, Ministry of Science and Technology, Govt. of India for providing Bioinformatics infrastructure facility to SVIMS Bioinformatics Centre (BT/BI/25/037/2012 (BIF-SVIMST)).

Conflict of interest

All authors declared that they have no conflicts of interest.

Ethical Approval

Neither human studies, nor animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umamaheswari Amineni.

Additional information

Associate Editor Yiannis Kaznessis oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1527 kb)

Supplementary material 2 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasala, C., Katari, S.K., Nalamolu, R.M. et al. Hierarchical-Clustering, Scaffold-Mining Exercises and Dynamics Simulations for Effectual Inhibitors Against Lipid-A Biosynthesis of Helicobacter pylori. Cel. Mol. Bioeng. 12, 255–274 (2019). https://doi.org/10.1007/s12195-019-00572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-019-00572-5

Keywords

Navigation