Skip to main content
Log in

Nanomechanical Analysis of Extracellular Matrix and Cells in Multicellular Spheroids

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Over the last decade, atomic force microscopy (AFM) has played an important role in understanding nanomechanical properties of various cancer cell lines. This study is focused on Lewis lung carcinoma cell tumours as 3D multicellular spheroid (MS). Not much is know about the mechanical properties of the cells and the surrounding extracellular matrix (ECM) in rapidly growing tumours.

Methods

Depth-dependent indentation measurements were conducted with the AFM. Force-vs.-indentation curves were used to create stiffness profiles as a function of depth. Here studies were focused on the outer most layer, i.e., proliferation zone of the spheroid.

Results

Both surface and sub-surface stiffness profiles of MS were created. This study revealed three nanomechanical topographies, Type A-high modulus due to collagen fibers, Type B-high stiffness at cell membrane and ECM interface and Type C-increased modulus due to cell lying deep inside matrix at a depth of 1.35 μm. Both Type and Type-B topographies result from collagen-based structures in ECM.

Conclusion

This study has first time revealed mechanical constitution of an MS. Depth-dependent indentation studies have the revealed role of various molecular and cellular components responsible for providing mechanical stability to MS. Nanomechanical heterogeneities revealed in this investigation can shed new light in developing correct dosage regime for collagenase treatment of tumours and designing better controlled artificial extracellular matrix systems for replicating tissue growth in-vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Andre, F., N. Berrada, and C. Desmedt. Implication of tumor microenvironment in the resistance to chemotherapy in breast cancer patients. Curr. Opin. Oncol. LWW 22:547–551, 2010.

    Article  Google Scholar 

  2. Bagnoli, K. L. Influence of EGF on HaCaT cells as measured by AFM with a comparison of AFM and 3D optical deconvolution using MH-S cells. M.S. Thesis, University of Connecticut, 2007.

  3. Bancelin, S., et al. Determination of collagen fibril size via absolute measurements of second-harmonic generation signals. Nat. Commun. 5:4920, 2014.

    Article  Google Scholar 

  4. Bertram, J. S., and P. Janik. Establishment of a cloned line of Lewis lung carcinoma cells adapted to cell culture. Cancer Lett. 11:63–73, 2017. https://doi.org/10.1016/0304-3835(80)90130-5.

    Article  Google Scholar 

  5. Carlsson, J., and J. M. Yuhas. Liquid-overlay culture of cellular spheroids. Recent Results Cancer Res. 95:1–23, 1984.

    Article  Google Scholar 

  6. Chaudhuri, O., et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13:970–978, 2014. https://doi.org/10.1038/nmat4009.

    Article  Google Scholar 

  7. Cross, S. E., Y.-S. Jin, J. Rao, and J. K. Gimzewski. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2:780–783, 2007. https://doi.org/10.1038/nnano.2007.388.

    Article  Google Scholar 

  8. Dokukin, M. E., and I. Sokolov. On the Measurements of Rigidity Modulus of Soft Materials in Nanoindentation Experiments at Small Depth. Macromolecules 45:4277–4288, 2012. https://doi.org/10.1021/ma202600b.

    Article  Google Scholar 

  9. Dufrene, Y. F., D. Martinez-Martin, I. Medalsy, D. Alsteens, and D. J. Muller. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Meth. 10:847–854, 2013. https://doi.org/10.1038/nmeth.2602.

    Article  Google Scholar 

  10. Efremov, Y. M., A. A. Dokrunova, D. V. Bagrov, K. S. Kudryashova, O. S. Sokolova, and K. V. Shaitan. The effects of confluency on cell mechanical properties. J. Biomech. 46:1081–1087, 2013.

    Article  Google Scholar 

  11. Gelse, K., E. Pöschl, and T. Aigner. Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55:1531–1546, 2003.

    Article  Google Scholar 

  12. Glimelius, B., B. Norling, T. Nederman, and J. Carlsson. Extracellular matrices in multicellular spheroids of human glioma origin: increased incorporation of proteoglycans and fibronectin as compared to monolayer cultures. APMIS 96:433–444, 1988.

    Article  Google Scholar 

  13. Goodman, T. T., P. L. Olive, and S. H. Pun. Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int. J. Nanomed. 2:265–274, 2007.

    Article  Google Scholar 

  14. Guz, N., M. Dokukin, V. Kalaparthi, and I. Sokolov. If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys. J. 107:564–575, 2014.

    Article  Google Scholar 

  15. Heim, A. J., W. G. Matthews, and T. J. Koob. Determination of the elastic modulus of native collagen fibrils via radial indentation. Appl. Phys. Lett. 89:181902, 2006.

    Article  Google Scholar 

  16. Hoh, J. H., and C. A. Schoenenberger. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell Sci. 107:1105–1114, 1994.

    Google Scholar 

  17. Jandt, K. D., M. Finke, and P. Cacciafesta. Aspects of the physical chemistry of polymers, biomaterials and mineralised tissues investigated with atomic force microscopy (AFM). Colloids Surf. B Biointerfaces 19:301–314, 2000.

    Article  Google Scholar 

  18. Jang, S. H., M. G. Wientjes, D. Lu, and J. L.-S. Au. Drug delivery and transport to solid tumors. Pharm. Res. 20:1337–1350, 2003. https://doi.org/10.1023/A:1025785505977.

    Article  Google Scholar 

  19. Kalluri, R. Angiogenesis: basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3:422–433, 2003.

    Article  Google Scholar 

  20. Keaton, A., J. F. Holzrichter, R. Balhorn, and W. J. Siekhaus. Nanostethoscopy: a new mode of operation of the atomic force microscope BT. In: Forces in Scanning Probe Methods, edited by H. J. Güntherodt, D. Anselmetti, and E. Meyer. Dordrecht: Springer, 1995, pp. 91–97. https://doi.org/10.1007/978-94-011-0049-6_8.

    Chapter  Google Scholar 

  21. Kessel, S., et al. Thermoresponsive PEG-based polymer layers: surface characterization with AFM force measurements. Langmuir 26:3462–3467, 2010. https://doi.org/10.1021/la903007v.

    Article  Google Scholar 

  22. Kim, S.-H., H.-J. Kuh, and C. R. Dass. The reciprocal interaction: chemotherapy and tumor microenvironment. Curr. Drug Discov. Technol. 8:102–106, 2011.

    Article  Google Scholar 

  23. Kühn, K., et al. Macromolecular structure of basement membrane collagens. FEBS Lett. 125:123–128, 1981.

    Article  Google Scholar 

  24. Kwon, E.-Y., Y.-T. Kim, and D.-E. Kim. Investigation of penetration force of living cell using an atomic force microscope. J. Mech. Sci. Technol. 23:1932–1938, 2009. https://doi.org/10.1007/s12206-009-0508-z.

    Article  Google Scholar 

  25. Lekka, M., et al. Cancer cell detection in tissue sections using AFM. Arch. Biochem. Biophys. 18:151–156, 2012.

    Article  Google Scholar 

  26. Leong, W. S., et al. Thickness sensing of hMSCs on collagen gel directs stem cell fate. Biochem. Biophys. Res. Commun. 401:287–292, 2010.

    Article  Google Scholar 

  27. Lin, R.-Z., and H.-Y. Chang. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol. J. 3:1172–1184, 2008. https://doi.org/10.1002/biot.200700228.

    Article  Google Scholar 

  28. Lutolf, M. P. Integration column: artificial ECM: expanding the cell biology toolbox in 3D. Integr. Biol. 1:235–241, 2009.

    Article  Google Scholar 

  29. Ma, X., et al. Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys. J. 104:1410–1418, 2013.

    Article  Google Scholar 

  30. Medalsy, I. D., and D. J. Müller. Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. ACS Nano 7:2642–2650, 2013. https://doi.org/10.1021/nn400015z.

    Article  Google Scholar 

  31. Mehta, G., A. Y. Hsiao, M. Ingram, G. D. Luker, and S. Takayama. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Control Release 164:192–204, 2012.

    Article  Google Scholar 

  32. Minchinton, A. I., and I. F. Tannock. Drug penetration in solid tumours. Nat. Rev. Cancer 6:583–592, 2006. https://doi.org/10.1038/nrc1893.

    Article  Google Scholar 

  33. Mouw, J. K., G. Ou, and V. M. Weaver. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15:771–785, 2014.

    Article  Google Scholar 

  34. Nederman, T., B. Norling, B. Glimelius, J. Carlsson, and U. Brunk. Demonstration of an extracellular matrix in multicellular tumor spheroids. Cancer Res. 44:3090–3097, 1984.

    Google Scholar 

  35. O’Reilly, M. S., et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma. Cell 79:315–328, 1994.

    Article  Google Scholar 

  36. Pampaloni, F., E. G. Reynaud, and E. H. K. Stelzer. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8:839–845, 2007. https://doi.org/10.1038/nrm2236.

    Article  Google Scholar 

  37. Paszek, M. J., et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.

    Article  Google Scholar 

  38. Plodinec, M., G. Schweighauser, R. Sütterlin, E. Oberman, and U. Aebi. Morphology and cytoarchitecture regulate nanomechanical properties of tumor spheroids. AFM Cancer Diagn. 7:116–145, 2012.

    Google Scholar 

  39. Pöschl, E., U. Schlötzer-Schrehardt, B. Brachvogel, K. Saito, Y. Ninomiya, and U. Mayer. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131:1619–1628, 2004.

    Article  Google Scholar 

  40. Provenzano, P. P., D. R. Inman, K. W. Eliceiri, and P. J. Keely. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28:4326–4343, 2009. https://doi.org/10.1038/onc.2009.299.

    Article  Google Scholar 

  41. Rico, F., P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E 72:21914, 2005. https://doi.org/10.1103/PhysRevE.72.021914.

    Article  Google Scholar 

  42. Roeder, B. A., K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin. Tensile mechanical properties of three-dimensional type i collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124:214–222, 2002.

    Article  Google Scholar 

  43. Sader, J. E., I. Larson, P. Mulvaney, and L. R. White. Method for the calibration of atomic force microscope cantilevers. Rev. Sci. Instrum. 66:3789–3798, 1995.

    Article  Google Scholar 

  44. Sawhney, A., C. Pathak, and J. Hubbell. Bioerodible hydrogels based on photopolymerized poly (ethylene glycol)-co-poly (alpha-hydroxy acid) diacrylate macromers. Macromolecules 26:518–587, 1993.

    Article  Google Scholar 

  45. Shekhar, M. P. V. Drug resistance: challenges to effective therapy. Curr. Cancer Drug Targets 11:613–623, 2011.

    Article  Google Scholar 

  46. Sokolov, I. Toward the nanoscale study of insect physiology using an atomic force microscopy-based nanostethoscope. MRS Bull. 37:522–527, 2012.

    Article  Google Scholar 

  47. Takagi, J., Y. Yang, J. Liu, J. Wang, and T. A. Springer. Complex between nidogen and laminin fragments reveals a paradigmatic β-propeller interface. Nature 424:969–974, 2003.

    Article  Google Scholar 

  48. Tibbitt, M. W., and K. S. Anseth. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103:655–663, 2009.

    Article  Google Scholar 

  49. Timpl, R., H. Wiedemann, V. van Delden, H. Furthmayr, and K. Kühn. A network model for the organization of type IV collagen molecules in basement membranes. Eur. J. Biochem. 120:203–211, 1981. https://doi.org/10.1111/j.1432-1033.1981.tb05690.x.

    Article  Google Scholar 

  50. Ushiki, T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 65:109–126, 2002.

    Article  Google Scholar 

  51. Vyas, V., N. Nagarajan, P. Zorlutuna, and B. D. Huey. Nanostethoscopy: atomic force microscopy probe contact force versus measured amplitude of cardiomyocytic contractions. J. Bionanosci. 11:319–322, 2017.

    Article  Google Scholar 

  52. Vyas, V., A. Podestà, and P. Milani. Probing nanoscale interactions on biocompatible cluster-assembled titanium oxide surfaces by atomic force microscopy. J. Nanosci. Nanotechnol. 11:4739–4748, 2011.

    Article  Google Scholar 

  53. Vyas, V., M. Solomon, G. G. M. D’Souza, and B. D. Huey. Dynamic and depth dependent nanomechanical properties of dorsal ruffles in live cells and biopolymeric hydrogels. J. Nanosci. Nanotechnol. 18:1557–1567, 2018.

    Article  Google Scholar 

  54. Wenger, M. P., L. Bozec, M. A. Horton, and P. Mesquida. Mechanical properties of collagen fibrils. Biophys. J. 93:1255–1263, 2007.

    Article  Google Scholar 

  55. Winer, J. P., S. Oake, and P. A. Janmey. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS ONE 4:e6382, 2009.

    Article  Google Scholar 

  56. Yang, Y. L., L. M. Leone, and L. J. Kaufman. Elastic moduli of collagen gels can be predicted from two-dimensional confocal microscopy. Biophys. J. 97:2051–2060, 2009.

    Article  Google Scholar 

  57. Yurchenco, P. D., and B. L. Patton. Developmental and pathogenic mechanisms of basement membrane assembly. Curr. Pharm. Des. 15:1277–1294, 2009.

    Article  Google Scholar 

  58. Yurchenco, P. D., and J. C. Schittny. Molecular architecture of basement membranes. FASEB J. 4:1577–1590, 1990.

    Article  Google Scholar 

Download references

Author Contributions

Conceived and designed the experiments: VV BDH. Performed the experiments: VV. Analyzed the data: VV BDH. Contributed biological material & cells: MS GGMD. Wrote the paper: VV.

Conflict of interest

Varun Vyas, Melani Solomon, Gerard G.M. D’Souza and Bryan D. Huey declare that they have no conflicts of interest.

Ethical Approval

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Funding

Provided by the University of Connecticut’s Provosts Fund and NSF Nano-Bio-Mechanics grant 0626231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Vyas.

Additional information

Associate Editor Kris Noel Dahl oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, V., Solomon, M., D’Souza, G.G.M. et al. Nanomechanical Analysis of Extracellular Matrix and Cells in Multicellular Spheroids. Cel. Mol. Bioeng. 12, 203–214 (2019). https://doi.org/10.1007/s12195-019-00577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-019-00577-0

Keywords

Navigation