Skip to main content
Log in

Mono and dinuclear platinum and palladium complexes containing adamantane–azole ligands: DNA and BSA interaction and cytotoxicity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Synthesis of dinuclear oxadiazole–adamantane platinum(II) and palladium(II) complexes (PtO, PdO) and mononuclear thiazolidine derivative complexes (PtT, PdT) was described. Characterization was performed by elemental analysis, infrared, UV–visible, 1H, 13C, 195Pt NMR spectra, MS spectroscopy and single crystal X-ray diffraction. The cytotoxicity by MTT assay against tumor and normal cell lines with or without extracellular GSH was also investigated. In general, mononuclear complexes containing thiazolidine–adamantane ligands were more cytotoxic than oxadiazole–adamantane derivatives. PtT complex proved to be as active as cisplatin. Dinuclear compounds were considered inactive to cells in evaluated conditions, due to their high stability with ligands in a chelated and bridged way. Results suggest that GSH cannot be considered a target. DNA- and BSA-binding interactions were evaluated using UV–visible and fluorescence spectroscopy, intercalating dyes and molecular docking. Upon coordination to platinum(II), the cytotoxic effect was appreciably improved against tested cell lines, in comparison to free thiazolidine ligand. Comparing thiazolidine derivatives, it is noticeable that the less active compound (PdT) presents stronger interaction with BSA, while PtT has the weaker interaction with BSA and relatively strong binding to isolated DNA, resulting in the most cytotoxic complex. This work shows that the presence of metal is significant but it should be available for interaction. The high lability of palladium complex made this stay retainable in BSA and two metal atoms do not increase activity if it is not able to do any interaction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Nature 222:385–386

    CAS  PubMed  Google Scholar 

  2. Abu-Surrah AS, Kettunen M (2006) Curr Med Chem 13:1337–1357

    CAS  PubMed  Google Scholar 

  3. Pizzorno J (2014) Integr Med (Encinitas, Calif) 13:8–12

    Google Scholar 

  4. Kelland L (2007) Nat Rev Cancer 7:573

    CAS  PubMed  Google Scholar 

  5. Bai L, Gao C, Liu Q, Yu C, Zhang Z, Cai L, Yang B, Qian Y, Yang J, Liao X (2017) Eur J Med Chem 140:349–382

    CAS  PubMed  Google Scholar 

  6. Yu C, Gao C, Bai L, Liu Q, Zhang Z, Zhang Y, Yang B, Li C, Dong P, Sun X, Qian Y (2017) Bioorg Med Chem Lett 27:963–966

    CAS  PubMed  Google Scholar 

  7. Williams JW, Qu Y, Bulluss GH, Alvorado E, Farrell NP (2007) Inorg Chem 46:5820–5822

    CAS  PubMed  Google Scholar 

  8. Sharma NK, Ameta RK, Singh M (2016) Biochem Res Int 2016:4359375

    PubMed  PubMed Central  Google Scholar 

  9. Saeidifar M, Mirzaei H, Ahmadi Nasab N, Mansouri-Torshizi H (2017) J Mol Struct 1148:339–346

    CAS  Google Scholar 

  10. Berners-Price SJ, Filipovska A (2011) Metallomics 3:863–873

    CAS  PubMed  Google Scholar 

  11. Garcia A, Machado RC, Grazul RM, Lopes MT, Corrêa CC, Dos Santos HF, de Almeida MV, Silva H (2016) J Biol Inorg Chem 21:275–292

    CAS  PubMed  Google Scholar 

  12. Bektaş H, Ceylan Ş, Demirbaş N, Alpay-Karaoğlu Ş, Sökmen BB (2013) Med Chem Res 22:3629–3639

    PubMed  Google Scholar 

  13. Patel MB, Modi NR, Raval JP, Menon SK (2012) Org Biomol Chem 10:1785–1794

    CAS  PubMed  Google Scholar 

  14. Kadi AA, Al-Abdullah ES, Shehata IA, Habib EE, Ibrahim TM, El-Emam AA (2010) Eur J Med Chem 45:5006–5011

    CAS  PubMed  Google Scholar 

  15. Sanchez-Delgado RA, Anzellotti A (2004) Mini Rev Med Chem 4:23–30

    CAS  PubMed  Google Scholar 

  16. Buß I, Garmann D, Galanski M, Weber G, Kalayda GV, Keppler BK, Jaehde U (2011) J Inorg Biochem 105:709–717

    PubMed  Google Scholar 

  17. Marchetti P, Zamzami N, Joseph B, Schraen-Maschke S, Méreau-Richard C, Costantini P, Métivier D, Susin SA, Kroemer G, Formstecher P (1999) Can Res 59:6257

    CAS  Google Scholar 

  18. Sheldrick G (2015) Acta Crystallogr Sect C 71:3–8

    Google Scholar 

  19. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Crystallogr 41:466–470

    CAS  Google Scholar 

  20. Niedermeyer THJ, Strohalm M (2012) PLoS One 7:e44913

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Heller DP, Greenstock CL (1994) Biophys Chem 50:305–312

    CAS  PubMed  Google Scholar 

  22. Estandarte AK, Botchway S, Lynch C, Yusuf M, Robinson I (2016) Sci Rep 6:31417

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lepecq JB, Paoletti C (1967) J Mol Biol 27:87–106

    CAS  PubMed  Google Scholar 

  24. Ni Y, Zhu R, Kokot S (2011) Analyst 136:4794–4801

    CAS  PubMed  Google Scholar 

  25. Drew HR, Wing RM, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE (1981) Proc Natl Acad Sci 78:2179

    CAS  PubMed  Google Scholar 

  26. Bujacz A (2012) Acta Crystallogr Sect D 68:1278–1289

    CAS  Google Scholar 

  27. Hehre WJ (2003) A guide to molecular mechanics and quantum chemical calculations. Wavefunction Inc., Irvine

    Google Scholar 

  28. Jones G, Willett P, Glen RC, Leach AR, Taylor R (2018) http://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/. Accessed July 2018

  29. Chaves OA, Jesus CSH, Cruz PF, Sant’Anna CMR, Brito RMM, Serpa C (2016) Spectrochim Acta Part A Mol Biomol Spectrosc 169:175–181

    CAS  Google Scholar 

  30. Mosmann T (1983) J Immunol Methods 65:55–63

    CAS  Google Scholar 

  31. Paschoal D, Guerra CF, de Oliveira MAL, Ramalho TC, Dos Santos HF (2016) J Comput Chem 37:2360–2373

    CAS  PubMed  Google Scholar 

  32. Chaves JDS, Neumann F, Francisco TM, Corrêa CC, Lopes MTP, Silva H, Fontes APS, de Almeida MV (2014) Inorg Chim Acta 414:85–90

    CAS  Google Scholar 

  33. Salem G, Wild SB (1992) Inorg Chem 31:581–586

    CAS  Google Scholar 

  34. Barolli JP, Corrêa RS, Miranda FS, Ribeiro JU, Bloch C Jr, Ellena J, Moreno V, Cominetti MR, Batista AA (2017) J Braz Chem Soc 28:1879–1889

    CAS  Google Scholar 

  35. Hunsucker SW, Watson RC, Tissue BM (2001) Rapid Commun Mass Spectrom 15:1334–1340

    CAS  PubMed  Google Scholar 

  36. Damnjanović B, Kamčeva T, Petrović B, Bugarčić ŽD, Petković M (2011) Anal Methods 3:400–407

    Google Scholar 

  37. Wang Z, Jiang L, Liu Z-P, Gan CRR, Liu Z, Zhang X-H, Zhao J, Hor TSA (2012) Dalton Trans 41:12568–12576

    CAS  PubMed  Google Scholar 

  38. Umakoshi K, Kinoshita I, Ichimura A, Ooi S (1987) Inorg Chem 26:3551–3556

    CAS  Google Scholar 

  39. Sicilia V, Forniés J, Casas JM, Martín A, López JA, Larraz C, Borja P, Ovejero C, Tordera D, Bolink H (2012) Inorg Chem 51:3427–3435

    CAS  PubMed  Google Scholar 

  40. Castiñeiras A, García-Santos I, Saa M (2008) Zeitschrift für anorganische und allgemeine Chemie 634:2281–2290

    Google Scholar 

  41. Terenzi A, Barone G, Palumbo Piccionello A, Giorgi G, Guarcello A, Portanova P, Calvaruso G, Buscemi S, Vivona N, Pace A (2010) Dalton Trans 39:9140–9145

    CAS  PubMed  Google Scholar 

  42. Viñuelas-Zahínos E, Luna-Giles F, Torres-García P, Bernalte-García A (2009) Polyhedron 28:4056–4064

    Google Scholar 

  43. Matesanz AI, Hernández C, Souza P (2014) J Inorg Biochem 138:16–23

    CAS  PubMed  Google Scholar 

  44. Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry. CRC Press, Boca Raton

    Google Scholar 

  45. Shahabadi N, Falsafi M (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 125:154–159

    CAS  Google Scholar 

  46. Grillaud M, Ruiz de Garibay AP, Bianco A (2016) RSC Adv 6:42933–42942

    CAS  Google Scholar 

  47. Sudeepa K, Narsimha N, Aparna B, Sreekanth S, Aparna AV, Ravi M, Mohmed J, Devi CS (2018) J Chem Sci 130:52

    Google Scholar 

  48. Štimac A, Šekutor M, Mlinarić-Majerski K, Frkanec L, Frkanec R (2017) Molecules 22:297–311

    PubMed Central  Google Scholar 

  49. Bonacorso HG, Calheiro TP, Acunha TV, Iglesias BA, Franceschini SZ, Ketzer A, Meyer AR, Nogara PA, Rocha JBT, Zanatta N, Martins MAP (2019) Dyes Pigm 161:396–402

    CAS  Google Scholar 

  50. Karami K, Alinaghi M, Amirghofran Z, Lipkowski J (2018) Inorg Chim Acta 471:797–807

    CAS  Google Scholar 

  51. de Barros LS, Chaves OA, Schaeffer E, Sant’Anna CMR, Ferreira ABB, Cesarin-Sobrinho D, da Silva FA, Netto-Ferreira JC (2016) J Fluorine Chem 190:81–88

    Google Scholar 

  52. Xia H-T, Liu Y-F, Lu G-J, Wang D-Q (2012) Synthesis and reactivity in inorganic, metal-organic, and nano-metal. Chemistry 42:145–153

    CAS  Google Scholar 

  53. Pereira-Maia E, Garnier-Suillerot A (2003) J Biol Inorg Chem 8:626–634

    CAS  PubMed  Google Scholar 

  54. Cristina B, Alexandru L, Taciuc V, Radu S-D (2011) Mini Rev Med Chem 11:214–224

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge FAPEMIG and CNPq for fellowships. M. T. Quezado thanks Laboratório Institucional de Pesquisa, Centro de Laboratórios Multiusuários, Laboratório Multiusuário de Proteômica (LIPq/CELAM, LMProt) da Universidade Federal de Minas Gerais. B. A. Iglesias thanks CNPq 409150/2018-5 and 304711/2018-7. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES/PROEX)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heveline Silva.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade Querino, A.L., da Silva, J.T., Silva, J.T. et al. Mono and dinuclear platinum and palladium complexes containing adamantane–azole ligands: DNA and BSA interaction and cytotoxicity. J Biol Inorg Chem 24, 1087–1103 (2019). https://doi.org/10.1007/s00775-019-01719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01719-5

Keywords

Navigation