Skip to main content
Log in

Expression and characterization of recombinant human VEGF165 in the middle silk gland of transgenic silkworms

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Recombinant human vascular endothelial growth factor (rhVEGF) has important applications in therapeutic angiogenesis and inhibition of VEGF-mediated pathological angiogenesis. Previous studies have shown that rhVEGF can be produced in several expression systems, including Escherichia coli, yeasts, insect cells and mammalian cells. However, little is known regarding the effective production of this protein in organs of live organisms. Here, we report for the first time the expression and characterization of rhVEGF165 in the middle silk gland (MSG) of the transgenic silkworm line S1-V165. Our results confirmed that (1) rhVEGF165 was highly expressed in MSG cells and was secreted into the cocoon of S1-V165; (2) the dimeric form of rhVEGF165 could be easily dissolved from S1-V165 cocoons using an alkaline solution; (3) rhVEGF165 extracted from S1-V165 cocoons exhibited slightly better cell proliferative activity than the hVEGF165 standard in cultured human umbilical vein endothelial cells. This study provides an alternative strategy for the production of bioactive rhVEGF165 using the MSG of transgenic silkworms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bencúrová M, Hemmer W, Focke-Tejkl M, Wilson IB, Altmann F (2004) Specificity of IgG and IgE antibodies against plant and insect glycoprotein glycans determined with artificial glycoforms of human transferrin. Glycobiology 14(5):457–466

    PubMed  Google Scholar 

  • Byun J, Heard JM, Huh JE, Park SJ, Jung EA, Jeong JO, Gwon HC, Kim DK (2001) Efficient expression of the vascular endothelial growth factor gene in vitro and in vivo, using an adeno-associated virus vector. J Mol Cell Cardiol 33:295–305

    CAS  PubMed  Google Scholar 

  • Cohen T, Gitay-Goren H, Neufeld G, Levi BZ (1992) High levels of biologically active vascular endothelial growth factor (VEGF) are produced by the baculovirus expression system. Growth Factors 7:131–138

    CAS  PubMed  Google Scholar 

  • Connolly DT, Olander JV, Heuvelman D, Nelson R, Monsell R, Siegel N, Haymore BL, Leimgruber R, Feder J (1989) Human vascular permeability factor. Isolation from U937 cells. J Biol Chem 264:20017–20024

    CAS  PubMed  Google Scholar 

  • Dehghanian F, Hojati Z (2014) Comparative insight into expression of recombinant human VEGF111b, a newly identified anti-angiogenic isoform, in eukaryotic cell lines. Gene 553:57–62

    CAS  PubMed  Google Scholar 

  • Ferrara N (1999) Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77:527–543

    CAS  PubMed  Google Scholar 

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    CAS  PubMed  Google Scholar 

  • Ferrara N, Gerber HP, Lecouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    CAS  Google Scholar 

  • Fiebich L, Jager B, Schollmann C, Weindel K, Wilting J, Kochs G, Marme D, Hug H (1993) Synthesis and assembly of functionally active human vascular endothelial growth factor homodimers in insect cells. Eur J Biochem 211:19–26

    CAS  PubMed  Google Scholar 

  • Gupta R, Tongers J, Losordo DW (2009) Human studies of angiogenic gene therapy. Circ Res 105:724–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580

    CAS  PubMed  Google Scholar 

  • Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012

    CAS  PubMed  Google Scholar 

  • Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210:630–637

    CAS  PubMed  Google Scholar 

  • Iizuka M, Ogawa S, Takeuchi A, Nakakita S, Kubo Y, Miyawaki Y, Hirabayashi J, Tomita M (2009) Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. FEBS J 276(20):5806–5820

    CAS  PubMed  Google Scholar 

  • Itoh K, Kobayashi I, Nishioka S, Sezutsu H, Machii H, Tamura T (2016) Recent progress in development of transgenic silkworms overexpressing recombinant human proteins with therapeutic potential in silk glands. Drug Discov Ther 10:34–39

    CAS  PubMed  Google Scholar 

  • Kang WK, Lee MH, Kim YH, Kim MY, Kim JY (2013a) Enhanced secretion of biologically active, non-glycosylated VEGF from Saccharomyces cerevisiae. J Biotechnol 164:441–448

    CAS  PubMed  Google Scholar 

  • Kang W, Kim S, Lee S, Jeon E, Lee Y, Yun YR, Suh CK, Kim HW, Jang JH (2013b) Characterization and optimization of vascular endothelial growth factor (165) (rhVEGF(165)) expression in Escherichia coli. Protein Expr Purif 87(2):55–60

    CAS  PubMed  Google Scholar 

  • Lee GY, Jung WW, Kang CS, Bang IS (2006) Expression and characterization of human vascular endothelial growth factor (VEGF165) in insect cells. Protein Expr Purif 46:503–509

    CAS  PubMed  Google Scholar 

  • Lee SB, Park JS, Lee S, Park J, Yu S, Kim H, Kim D, Byun TH, Baek K, Ahn YJ, Yoon J (2008) Overproduction of recombinant human VEGF (vascular endothelial growth factor) in Chinese hamster ovary cells. J Microbiol Biotechnol 18:183–187

    CAS  PubMed  Google Scholar 

  • Mitra N, Sinha S, Ramya TN, Surolia A (2006) N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci 31(3):156–163

    CAS  PubMed  Google Scholar 

  • Mohanraj D, Olson T, Ramakrishnan S (1995) Expression of biologically active human vascular endothelial growth factor in yeast. Growth Factors 12:17–27

    CAS  PubMed  Google Scholar 

  • Morse MA (2001) Technology evaluation: VEGF165 gene therapy, Valentis Inc. Curr Opin Mol Ther 3:97–101

    CAS  PubMed  Google Scholar 

  • Nguyen MT, Krupa M, Koo BK, Song JA, Vu TT, Do BH, Nguyen AN, Seo T, Yoo J, Jeong B, Jin J, Lee KJ, Oh HB, Choe H (2016) Prokaryotic soluble overexpression and purification of human VEGF165 by fusion to a maltose binding protein tag. PLoS ONE 11(5):e0156296

    PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Tomita M, Shimizu K, Yoshizato K (2007) Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. J Biotechnol 128:531–544

    CAS  PubMed  Google Scholar 

  • Park JS, Seo HS, Yum JS, Moon HM, Lee J (2005) The influence of N-glycosylation and C-terminal sequence on secretion of HBV large surface antigen from S. cerevisiae. Biotechnol Bioeng 92(2):250–255

    CAS  PubMed  Google Scholar 

  • Peretz D, Gitay-Goren H, Safran M, Kimmel N, Gospodarowicz D, Neufeld G (1992) Glycosylation of vascular endothelial growth factor is not required for its mitogenic activity. Biochem Biophys Res Commun 182(3):1340–1347

    CAS  PubMed  Google Scholar 

  • Poltorak Z, Cohen T, Sivan R, Kandelis Y, Spira G, Vlodavsky I, Keshet E, Neufeld G (1997) VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem 272:7151–7158

    CAS  PubMed  Google Scholar 

  • Samuel RVM, Farrukh SY, Rehmat S, Hanif MU, Ahmed SS, Musharraf SG, Durrani FG, Saleem M, Gul R (2018) Soluble production of human recombinant VEGF-A121 by using SUMO fusion technology in Escherichia coli. Mol Biotechnol 60:585–594

    CAS  PubMed  Google Scholar 

  • Santulli G (ed) (2013) Angiogenesis: insights from a systematic overview. Nova Science, New York. ISBN 978-1-62618-114-4

    Google Scholar 

  • Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    CAS  PubMed  Google Scholar 

  • Senger DR, Perruzzi CA, Feder J, Dvorak HF (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 46:5629–5632

    CAS  PubMed  Google Scholar 

  • Siemeister G, Schnurr B, Mohrs K, Schachtele C, Marme D (1996) Expression of biologically active isoforms of the tumor angiogenesis factor VEGF in Escherichia coli. Biochem Biophys Res Commun 222:249–255

    CAS  PubMed  Google Scholar 

  • Stephan CC, Brock TA (1996) Vascular endothelial growth factor, a multifunctional polypeptide. P R Health Sci J 15:169–178

    CAS  PubMed  Google Scholar 

  • Taimeh Z, Loughran J, Birks EJ, Bolli R (2013) Vascular endothelial growth factor in heart failure. Nat Rev Cardiol 10:519–530

    CAS  PubMed  Google Scholar 

  • Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci 109:227–241

    CAS  PubMed  Google Scholar 

  • Taktak-BenAmar A, Morjen M, Ben Mabrouk H, Abdelmaksoud-Dammak R, Guerfali M, Fourati-Masmoudi N, Marrakchi N, Gargouri A (2017) Expression, purification and functionality of bioactive recombinant human vascular endothelial growth factor VEGF165 in E. coli. AMB Express 7(1):33

    PubMed  PubMed Central  Google Scholar 

  • Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA (1991) The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 266:11947–11954

    CAS  PubMed  Google Scholar 

  • Tokuda H, Kozawa O, Uematsu T (2000) Basic fibroblast growth factor stimulates vascular endothelial growth factor release in osteoblasts: divergent regulation by p42/p44 mitogen-activated protein kinase and p38 mitogen-activated protein kinase. J Bone Miner Res 15(12):2371–2379

    CAS  PubMed  Google Scholar 

  • Tomita M (2011) Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol Lett 33(4):645–654

    CAS  PubMed  Google Scholar 

  • Walter DH, Hink U, Asahara T, Van Belle E, Horowitz J, Tsurumi Y, Vandlen R, Heinsohn H, Keyt B, Ferrara N, Symes JF, Isner JM (1996) The in vivo bioactivity of vascular endothelial growth factor/vascular permeability factor is independent of N-linked glycosylation. Lab Invest 74(2):546–556

    CAS  PubMed  Google Scholar 

  • Wang G, Xia Q, Cheng D, Duan J, Zhao P, Chen J, Zhu L (2008) Reference genes identified in the silkworm Bombyx mori during metamorphism based on oligonucleotide microarray and confirmed by qRT-PCR. Insect Sci 15(5):405–413

    Google Scholar 

  • Wang F, Xu H, Yuan L, Ma S, Wang Y, Duan X, Duan J, Xiang Z, Xia Q (2013) An optimized sericin-1 expression system for mass-producing recombinant proteins in the middle silk glands of transgenic silkworms. Transgenic Res 22:925–938

    CAS  PubMed  Google Scholar 

  • Xu H (2014) The advances and perspectives of recombinant protein production in the silk gland of silkworm Bombyx mori. Transgenic Res 23:697–706

    CAS  PubMed  Google Scholar 

  • Xu H, Yuan L, Wang F, Wang Y, Wang R, Song C, Xia Q, Zhao P (2014) Overexpression of recombinant infectious bursal disease virus (IBDV) capsid protein VP2 in the middle silk gland of transgenic silkworm. Transgenic Res 23:809–816

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work was not cited in this paper due to the publisher’s space constraints. This work was supported by Grants (31872291, 31801126) from the National Natural Science Foundation of China and the Chongqing Research Program of Basic Research and Frontier Technology (cstc2017jcyjBX0041, cstc2017jcyj-yszx0009). The English in the manuscript was polished by American Journal Experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanfu Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Liu, R., Luo, Q. et al. Expression and characterization of recombinant human VEGF165 in the middle silk gland of transgenic silkworms. Transgenic Res 28, 601–609 (2019). https://doi.org/10.1007/s11248-019-00173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-019-00173-y

Keywords

Navigation