Skip to main content
Log in

Immunohistochemical localization and possible functions of nesfatin-1 in the testis of mice during pubertal development and sexual maturation

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

The study was aimed to address the role of nesfatin-1 on the sexual maturation of testis during the pubertal transition. The immunostaining of testis suggested nesfatin-1 is expressed in Leydig cells with pubertal maturation. The pre-pubertal mice for in vivo study were randomly divided in three groups; (a) control-saline (b) treated with low (0.25 nM) dose of nesfatin-1/gbw/day and (c) treated with high (1.25 nM) dose nesfatin-1/gbw/day. Histological analysis showed that nesfatin-1 loaded mice showed facilitated maturation of testis. Western blot analysis on various protein expressions upon injection of nesfatin-1 into pre-pubertal mice suggested that expressions of proteins involving steroid hormone production, spermatogenic markers (PCNA, Bcl2, AR), glucose uptake-related proteins (GLUT8 and insulin receptor) and GnRH-R and GPR-54 proteins were facilitated. Both of lactose dehydrogenase activity and lactate levels were increased. The treatment with nesfatin-1 also reduced oxidative stress, which further facilitates testicular functions during puberty. The treatment of nesfatin-1 on cultured testis also supports in vivo findings as evident by the increased testosterone production and StAR protein expression as well as increased glucose and lactate production. In sum, our data report for the first time the accelerative role of nesfatin-1 on spermatogenesis and steroidogenesis of pre-pubertal male mice by directly acting on the testis coupled with the advancement of puberty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd EL-Meseeh NA, El-Shaarawy EAA, AlDomairy AF, Sehly RAA, (2016) Changes in rat testis morphology and androgen receptor expression around the age of puberty. Ann Anat 205:37–44

    PubMed  Google Scholar 

  • Abercrombie M (1946) Nuclear population from microtome sections. Anat Rec 94:239–247

    CAS  PubMed  Google Scholar 

  • Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 673–684

    Google Scholar 

  • Alves MG, Martins AD, Rato L, Moreira PI, Socorro S, Oliveira PF (2013) Molecular mechanisms beyond glucose transport in diabetes-related male infertility. Biochim Biophys Acta 1832:626–635

    CAS  PubMed  Google Scholar 

  • Amstalden M, Alves BRC, Liu S, Cardoso RC, Williams GL (2011) Neuroendocrine pathways mediating nutritional acceleration of puberty: Insights from ruminant models. Front Endocrinol 2:1–7

    Google Scholar 

  • Anjum S, Krishna A, Sridaran R, Tsutsui K (2012) Localization of gonadotropin-releasing hormone (GnRH), gonadotropin-inhibitory hormone (GnIH), kisspeptin and GnRH receptor and their possible roles in testicular activities from birth to senescence in mice. J Exp Zool A 317:630–644

    CAS  Google Scholar 

  • Anjum S, Krishna A, Tsutsui K (2014) Inhibitory roles of the mammalian GnIH ortholog RFRP3 in testicular activities in adult mice. J Endocrinol 223(1):79–91

    CAS  PubMed  Google Scholar 

  • Anjum S, Anuradha A, Krishna A (2018) A possible direct action of oxytocin on spermatogenesis and steroidogenesis in pre-pubertal mouse. Andrologia. https://doi.org/10.1111/and.12958

    Article  PubMed  Google Scholar 

  • Banerjee A, Anjum S, Verma R, Krishna A (2012) Alteration in expression of estrogen receptor isoforms alpha and beta, and aromatase in the testis and its relation with changes in nitric oxide during aging in mice. Steroids 77:609–620

    CAS  PubMed  Google Scholar 

  • Banerjee A, Anuradha Mukherjee K, Krishna A (2014) Testicular glucose and its transporter GLUT 8 as a marker of age-dependent variation and its role in steroidogenesis in mice. J Exp Zool A 321(9):490–502

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Burcelin R, Thorens B, Glauser M, Gaillard RC, Pralong FP (2003) Gonadotropin-releasing hormone secretion from hypothalamic neurons: stimulation by insulin and potentiation by leptin. Endocrinology 144:4484–4491

    CAS  PubMed  Google Scholar 

  • Choubey M, Ranjan A, Bora PS, Baltazar F, Martin LJ, Krishna A (2019) Role of adiponectin as a modulator of testicular function during aging in mice. Biochim Biophys Acta 1865(2):413–427

    CAS  Google Scholar 

  • Das K, Samanta L, Chainy GBN (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian J Biochem Biophys 37:201–204

    CAS  Google Scholar 

  • Dore R, Levata L, Lehnert H, Schulz C (2017) Nesfatin-1: functions and physiology of a novel regulatory peptide. J Endocrinol 232:45–65

    Google Scholar 

  • Fernandez-Fernandez R, Martini AC, Navarro VM, Castellano JM, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M (2006) Novel signals for the integration of energy balance and reproduction. Mol Cell Endocrinol 254–255:127–132

    PubMed  Google Scholar 

  • Frisch RE, Revelle R (1970) Height and weight at menarche and a hypothesis of critical body weights and adolescent events. Science 169:397–399

    CAS  PubMed  Google Scholar 

  • Gao X, Zhang K, Song M, Li X, Luo L, Tian Y, Zhang Y, Li Y, Zhang X, Ling Y, Fang F, Liu Y (2016) Role of nesfatin-1 in the reproductive axis of male rat. Sci Rep 6:1–10

    Google Scholar 

  • García-Galiano D, Tena-Sempere M (2013) Emerging roles of nucb2/nesfatin-1 in the metabolic control of reproduction. Curr Pharm Des 19:6966–6972

    CAS  PubMed  Google Scholar 

  • Garcia-Galiano D, Navarro VM, Roa J, Ruiz-Pino F, Sanchez-Garrido MA, Pineda R, Castellano JM, Romero M, Aguilar E, Gaytan F, Dieguez C, Pinilla L, Tena-Sempere M (2010) The anorexigenic neuropeptide, nesfatin-1, is indispensable for normal puberty onset in the female rat. J Neurosci 30:7783–7792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez R, Tiwari A, Unniappan S (2009) Pancreatic beta cells colocalize insulin and pronesfatin immunoreactivity in rodents. Biochem Biophys Res Commun 381:643–648

    CAS  PubMed  Google Scholar 

  • Hatef A, Unniappan S (2017) Gonadotropin-releasing hormone, kisspeptin, and gonadal steroids directly modulate nucleobindin-2/nesfatin-1 in murine hypothalamic gonadotropin-releasing hormone neurons and gonadotropes. Biol Reprod 96:635–651

    CAS  PubMed  Google Scholar 

  • Ji G, Gu A, Wang Y, Huang C, Hu F, Zhou Y, Song L, Wang X (2012) Genetic variants in antioxidant genes are associated with sperm DNA damage and risk of male infertility in a Chinese population. Free Radic Biol Med 52:775–780

    CAS  PubMed  Google Scholar 

  • Jiang G, Wang M, Wang L, Chen H, Chen Z, Guo J, Weng X, Liu X (2015) The protective effect of nesfatin-1 against renal ischemia-reperfusion injury in rats. Ren Fail 37:882–889

    CAS  PubMed  Google Scholar 

  • Kim J, Yang H (2012) Nesfatin-1 as a new potent regulator in reproductive system. Dev Reprod 16:253–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Chung Y, Kim H, Im E, Lee H, Yang H (2014) The tissue distribution of nesfatin-1/NUCB2 in mouse. Dev Reprod 18:301–309

    PubMed  PubMed Central  Google Scholar 

  • Kirilov M, Clarkson J, Liu X, Roa J, Campos P, Porteous R, Schütz G, Herbison AE (2013) Dependence of fertility on kisspeptin-Gpr54 signaling at the GnRH neuron. Nat Commun 4:2492

    PubMed  Google Scholar 

  • Klentrou P, Plyley M (2003) Onset of puberty, menstrual frequency, and body fat in elite rhythmic gymnasts compared with normal controls. Br J Sports Med 37:490–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koskenniemi JJ, Virtanen HE, Toppari J (2017) Testicular growth and development in puberty. Curr Opin Endocrinol Diabetes Obe 24:215–224

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagentThe folin by oliver. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lunn SF, Recio R, Morris K, Fraser HM (1994) Blockade of the neonatal rise in testosterone by a gonadotrophin-releasing hormone antagonist: effects on timing of puberty and sexual behaviour in the male marmoset Monkey. J Endocrinol 141:439–447

    CAS  PubMed  Google Scholar 

  • Manfredi-lozano M, Roa J, Tena-sempere M (2018) Connecting metabolism and gonadal function: novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front Neuroendocrinol 48:37–49

    CAS  PubMed  Google Scholar 

  • Mantha V, Prasad M, Kalra J, Subrahmanyam PK (1993) Antioxidant enzymes in hypercholesterolemia and effects of vitamin E in rabbits. Atherosclerosis 101:135–144

    CAS  PubMed  Google Scholar 

  • Martos-Moreno GÁ, Chowen JA, Argente J (2010) Metabolic signals in human puberty: effects of over and undernutrition. Mol Cell Endocrinol 324:70–81

    CAS  PubMed  Google Scholar 

  • McGee SR, Narayan P (2013) Precocious puberty and Leydig cell hyperplasia in male mice with a gain of function mutation in the LH receptor gene. Endocrinology 154(10):3900–3913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meistrich ML, Hess RA (2013) Assessment of spermatogenesis through staging of seminiferous tubules. Methods Mol Biol 927:299–307

    CAS  PubMed  Google Scholar 

  • Nakata M, Manaka K, Yamamoto S, Mori M, Yada T (2011) Nesfatin-1 enhances glucose-induced insulin secretion by promoting Ca2+ influx through L-type channels in mouse islet β-cells. Endocr J 58:305–313

    CAS  PubMed  Google Scholar 

  • Navarro VM, Fernández-Fernández R, Castellano JM, Roa J, Mayen A, Barreiro ML, Gaytan F, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M (2004) Advanced vaginal opening and precocious activation of the reproductive axis by KiSS-1 peptide, the endogenous ligand of GPR54. J Physiol 561:379–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443:709–712

    CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  PubMed  Google Scholar 

  • Qiu X, Dowling AR, Marino JS, Faulkner LD, Bryant B, Brüning JC, Elias CF, Hill JW (2013) Delayed puberty but normal fertility in mice with selective deletion of insulin receptors from kiss1 cells. Endocrinology 154:1337–1348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanjaneya M, Chen J, Brown JE, Tripathi G, Hallschmid M, Patel S, Kern W, Hillhouse EW, Lehnert H, Tan BK, Randeva HS (2010) Identification of nesfatin-1 in human and murine adipose tissue: a novel depot-specific adipokine with increased levels in obesity. Endocrinology 151:3169–3180

    CAS  PubMed  Google Scholar 

  • Ranjan A, Choubey M, Yada T, Krishna A (2019) Direct effects of neuropeptide nesfatin-1 on testicular spermatogenesis and steroidogenesis of the adult mice. Gen Comp Endocrinol 271:49–60

    CAS  PubMed  Google Scholar 

  • Rato L, Alves MG, Socorro S, Duarte AI, Cavaco JE, Oliveira PF (2012) Metabolic regulation is important for spermatogenesis. Nat Rev Urol 9:330–338

    CAS  PubMed  Google Scholar 

  • Roa J, Tena-Sempere M (2010) Energy balance and puberty onset: Emerging role of central mTOR signaling. Trends Endocrinol Metab 21:519–528

    CAS  PubMed  Google Scholar 

  • Romeo RD, Richardson HN, Sisk CL (2002) Puberty and the maturation of the male brain and sexual behavior: Recasting a behavioral potential. Neurosci Biobehav Rev 26:381–391

    PubMed  Google Scholar 

  • Samuel JB, Stanley JA, Princess RA, Shanthi P, Sebastian MS (2011) Gestational cadmium exposure-induced ovotoxicity delays puberty through oxidative stress and impaired steroid hormone levels. J Med Toxicol 7:195–204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Garrido MA, Tena-Sempere M (2013) Metabolic control of puberty: roles of leptin and kisspeptins. Horm Behav 64:187–194

    CAS  PubMed  Google Scholar 

  • Sano K, Nakata M, Musatov S, Morishita M, Sakamoto T, Tsukahara S, Ogawa S (2016) Pubertal activation of estrogen receptor α in the medial amygdala is essential for the full expression of male social behavior in mice. Proc Natl Acad Sci 113:7632–7637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlatt S, Weinbauer GE (1994) lmmunohistochemical localization of proliferating cell nuclear antigen as a tool to study cell proliferation in rodent and primate testes. Int J Androl 17(4):214–222

    CAS  PubMed  Google Scholar 

  • Shimizu H, Oh-I S, Okada S, Mori M (2009) Nesfatin-1: an overview and future clinical application. Endocrine J 56:537–543

    CAS  Google Scholar 

  • Sisk CL, Foster DL (2004) The neural basis of puberty and adolescence. Nat Neurosci 7:1040–1047

    CAS  PubMed  Google Scholar 

  • Steger K, Aleithe I, Behre H, Bergmann M (1998) The proliferation of spermatogonia in normal and pathological human seminiferous epithelium: an immunohistochemical study using monoclonal antibodies against Ki-67 protein and proliferating cell nuclear antigen. Mol Hum Reprod 4:227–233

    CAS  PubMed  Google Scholar 

  • Su Y, Zhang J, Tang Y, Bi F, Liu J (2010) The novel function of nesfatin-1: anti-hyperglycemia. Biochem Biophys Res Commun 391:1039–1042

    CAS  PubMed  Google Scholar 

  • Templeman NM, Murphy CT (2018) Regulation of reproduction and longevity by nutrient-sensing pathways. J Cell Biol 217:93–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RS, Yeh S, Tzeng CR, Chang C (2009) Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev 30:119–132

    PubMed  PubMed Central  Google Scholar 

  • Zhang ZH, Zhou XC, Wei P, Hu ZY, Liu YX (2003) Expression of Bcl-2 and Bax in rhesus monkey testis during germ cell apoptosis induced by testosterone undecanoate. Arch Androl 49:439–447

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge ISLS BHU Varanasi for providing NanoDrop facility. We also acknowledge the staff of the animal house, Zoology BHU for taking care and maintaining mice colony.

Funding

This work did not receive any specific research grant.

Author information

Authors and Affiliations

Authors

Contributions

AR performed all the experiments. AR and AK written the main manuscript. MC and TY corrected the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Amitabh Krishna.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3840 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, A., Choubey, M., Yada, T. et al. Immunohistochemical localization and possible functions of nesfatin-1 in the testis of mice during pubertal development and sexual maturation. J Mol Hist 50, 533–549 (2019). https://doi.org/10.1007/s10735-019-09846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-019-09846-8

Keywords

Navigation