Skip to main content

Advertisement

Log in

The additive hazard estimator is consistent for continuous-time marginal structural models

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Marginal structural models (MSMs) allow for causal analysis of longitudinal data. The standard MSM is based on discrete time models, but the continuous-time MSM is a conceptually appealing alternative for survival analysis. In applied analyses, it is often assumed that the theoretical treatment weights are known, but these weights are usually unknown and must be estimated from the data. Here we provide a sufficient condition for continuous-time MSM to be consistent even when the weights are estimated, and we show how additive hazard models can be used to estimate such weights. Our results suggest that continuous-time weights perform better than IPTW when the underlying process is continuous. Furthermore, we may wish to transform effect estimates of hazards to other scales that are easier to interpret causally. We show that a general transformation strategy can be used on weighted cumulative hazard estimates to obtain a range of other parameters in survival analysis, and explain how this strategy can be applied on data using our R packages ahw and transform.hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aalen O, Cook R, Røysland K (2015) Does cox analysis of a randomized survival study yield a causal treatment effect? Lifetime Data Anal 21(4):579–593

    Article  MathSciNet  Google Scholar 

  • Andersen P, Borgan Ø, Gill R, Keiding N (1993) Statistical models based on counting processes. Springer series in statistics. Springer, New York. ISBN 0-387-97872-0

    Book  Google Scholar 

  • Cole S, Hernán M (2008) Constructing inverse probability weights for marginal structural models. Am J Epidemiol 168(6):656–664

    Article  Google Scholar 

  • Havercroft W, Didelez V (2012) Simulating from marginal structural models with time-dependent confounding. Stat Med 31(30):4190–4206

    Article  MathSciNet  Google Scholar 

  • Hernán M (2010) The hazards of hazard ratios. Epidemiology 21(1):13

    Article  MathSciNet  Google Scholar 

  • Hernán M, Brumback B, Robins J (2000a) Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 11(5):561–570 ISSN 10443983. http://www.jstor.org/stable/3703998

    Article  Google Scholar 

  • Hernán M, Brumback B, Robins J (2000b) Marginal structural models to estimate the causal effect of zidovudine on the survival of hiv-positive men. Epidemiology 11(5):561–570

    Article  Google Scholar 

  • Huffer F, McKeague I (1991) Weighted least squares estimation for Aalen’s additive risk model. J Am Stat Assoc 86(413):114–129 ISSN 01621459. http://www.jstor.org/stable/2289721

    Article  Google Scholar 

  • Jacod J (1975) Multivariate point processes: predictable projection, Radon–Nikodym derivatives, representation of martingales. Probab Theory Relat Fields 31:235–253

    MathSciNet  MATH  Google Scholar 

  • Jacod J, Shiryaev A (2003) Limit theorems for stochastic processes. In: Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol 288, 2nd edn. Springer, Berlin, ISBN 3-540-43932-3

  • Joffe M, Ten Have T, Feldman H, Kimmel S (2004) Model selection, confounder control, and marginal structural models: review and new applications. Am Stat 58(4):272–279

    Article  MathSciNet  Google Scholar 

  • McKeague I (1987) Asymptotic theory for weighted least squares estimators in Aalen’s additive risk model

  • Pearl J (2000) Causality: models, reasoning and inference, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Robins J (2014) Structural nested failure time models. Wiley StatsRef: Statistics Reference Online, New York

    Book  Google Scholar 

  • Robins J, Greenland S (1989) The probability of causation under a stochastic model for individual risk. Biometrics 45(4):1125–1138

    Article  MathSciNet  Google Scholar 

  • Robins J, Hernán M, Brumback B (2000) Marginal structural models and causal inference in epidemiology. Epidemiology 11(5):550–560

    Article  Google Scholar 

  • Røysland K (2011) A martingale approach to continuous-time marginal structural models. Bernoulli 17:895–915

    Article  MathSciNet  Google Scholar 

  • Ryalen P, Stensrud M, Fosså S, Røysland K (2018a) Causal inference in continuous time: an example on prostate cancer therapy. Biostatistics. https://doi.org/10.1093/biostatistics/kxy036

    Article  Google Scholar 

  • Ryalen P, Stensrud M, Røysland K (2018b) Transforming cumulative hazard estimates. Biometrika. https://doi.org/10.1093/biomet/asy035

    Chapter  Google Scholar 

  • Stensrud M, Valberg M, Røysland K, Aalen O (2017) Exploring selection bias by causal frailty models: the magnitude matters. Epidemiology 28(3):379–386

    Article  Google Scholar 

  • Stensrud M, Røysland K, Ryalen P (2018) On null hypotheses in survival analysis. ArXiv e-prints, July

  • Vansteelandt S, Sjolander A (2016) Revisiting g-estimation of the effect of a time-varying exposure subject to time-varying confounding. Epidemiol Methods 5(1):37–56

    MATH  Google Scholar 

Download references

Funding

The authors were all supported by The Research Council of Norway, Grant NFR239956/F20—Analyzing clinical health registries: Improved software and mathematics of identifiability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål C. Ryalen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: proofs

We need some lemmas to prove Theorem 1.

Lemma 1

Suppose that \(\{V^i\}_i\) are processes on [0, T] such that \(\sup _ i E\big [ \sup _{s} | V^i_s | \big ] < \infty \), then

$$\begin{aligned} \lim _{a \rightarrow \infty } \sup _n P \left( \sup _s \big | \frac{1}{n} \sum _{i=1}^n V^{i}_{s} \big | \ge a \right) = 0. \end{aligned}$$
(25)

Proof

By Markov’s inequality, we have for every \(a > 0\) that

$$\begin{aligned}&P \left( \sup _s \big | \frac{1}{n} \sum _{i=1}^n V^{i}_{s} \big | \ge a \right) \le \frac{1}{n a} \sum _{i=1}^n E_P \bigg [\sup _s \big | V^{i}_{s} \big |\bigg ], \end{aligned}$$

which proves the claim. \(\square \)

Lemma 2

(A perturbed law of large numbers) Suppose

  1. (I)

    \(p^{-1} + q^{-1} = 1\), \(p < \infty \),

  2. (II)

    \(\{V_i\}_i \subset L^p(P)\), \(\{ S_i\}_i \subset L^q(P)\) such that \(\{ (V_{i},S_{i})\}_i\) is i.i.d., and \(V_i\), \(S_i\) are measurable with respect to a \(\sigma \)-algebra \({\mathcal {F}}_i\),

  3. (III)

    Triangular array \(\{S_{(i,n)}\}_{n,i \le n }\) such that

    $$\begin{aligned} \lim \limits _{n\longrightarrow \infty } P \big ( |S_{(1,n)}- S_1| \ge \epsilon \big ) = 0 \end{aligned}$$
    (26)

    for every \(\epsilon > 0\), and there exists a \({{\tilde{S}}} \in L^q(P)\) such that \({{\tilde{S}}} \ge |S_{(1,n)}|\) for every n,

  4. (IV)

    The conditional density of \(S_{(i,n)}\) given \({\mathcal {F}}_i\) does not depend on i.

This implies that

$$\begin{aligned} \lim \limits _{n\longrightarrow \infty } E\bigg [ \bigg | \frac{1}{n} \sum _{i = 1} ^n S_{(i,n)} V_i -E_{ P} [S_1 V_1] \bigg | \bigg ] = 0. \end{aligned}$$
(27)

Proof

From the triangle inequality and condition (IV) we have that

$$\begin{aligned}&E \bigg [\bigg | \frac{1}{n} \sum _{i = 1}^n S_{(i,n)} V_i - \frac{1}{n} \sum _{i = 1}^n S_{i} V_i \bigg | \bigg ] \le \frac{1}{n} \sum _{i = 1}^n E \big [\big | \big ( S_{(i,n)} - S_{i} \big )V_i \big | \big ] \\&\quad = E \big [\big | \big ( S_{(1,n)} - S_{1} \big )V_1 \big |\big ]. \end{aligned}$$

The dominated convergence theorem implies that the last term converges to 0. Finally, the weak law of large numbers and the triangle inequality yields

$$\begin{aligned}&\lim \limits _{n\longrightarrow \infty } E\bigg [ \bigg | \frac{1}{n} \sum _{i = 1} ^n S_{(i,n)} V_i -E_{ P} [S_1 V_1] \bigg | \bigg ]\\&\quad \le \lim \limits _{n\longrightarrow \infty } E \bigg [\bigg | \frac{1}{n} \sum _{i = 1}^n S_{(i,n)} V_i - \frac{1}{n} \sum _{i = 1}^n S_{i} V_i \bigg | \bigg ]+ E \bigg [\bigg | \frac{1}{n} \sum _{i = 1}^n S_{i} V_i - E[S_{1} V_1] \bigg | \bigg ] = 0. \end{aligned}$$

\(\square \)

Lemma 3

\(\{V_i\}_i\) i.i.d. non-negative variables in \(L^2(P)\), then

$$\begin{aligned} \lim _{n \rightarrow \infty } P \bigg ( \frac{1}{n} \max _{ i \le n} V_i \ge \epsilon \bigg ) = 0 \end{aligned}$$
(28)

for every \(\epsilon > 0\).

Proof

Note that

$$\begin{aligned} P \bigg ( \frac{1}{n} \max _{ i \le n} V_i> \epsilon \bigg )&= 1- P \bigg ( \max _{ i \le n} V_i \le \epsilon n \bigg ) = 1- P \bigg ( V_1\le \epsilon n \bigg )^n \\&= 1- \bigg (1 - P \big ( V_1 > \epsilon n \big )\bigg )^n \end{aligned}$$

If \(n > \Vert V_1 \Vert _2\epsilon ^{-1}\), we therefore have by Chebyshev’s inequality that

$$\begin{aligned} P \bigg ( \frac{1}{n} \max _{ i \le n} V_i > \epsilon \bigg ) \le 1- \bigg (1 - \frac{E[V_1^2]}{n^2 \epsilon ^2} \bigg )^n, \end{aligned}$$

where the last term converges to 0 when \(n \rightarrow \infty \) since \(\lim \nolimits _{n\longrightarrow \infty } n \log \big ( 1 - \frac{E[V_1^2]}{n^2 \epsilon ^2} \big ) = 0\) for every \(\epsilon > 0\). \(\square \)

Lemma 4

Define \(\gamma _s^i := Y_s^{i,D} \pmb X^i_s \pmb b_s\), where \(\pmb X^i_{s}\) is the i’th row of \(\pmb X^{(n)}_{s}\). If the assumptions of Theorem 1 are satisfied, then

$$\begin{aligned} \lim \limits _{n\longrightarrow \infty } P \bigg ( \sup _t \bigg | \int _0^t \pmb \varGamma ^{(n)-1} \frac{1}{n} \sum _{i=1}^n R^{(i,n)}_{s-}\pmb X_{s-}^{i \intercal } ( \lambda ^{i,D}_s - \gamma ^i_s ) ds \bigg | \ge \delta \bigg )= 0 \end{aligned}$$
(29)

for every \(\delta > 0\).

Proof

Assumption (III) from Theorem 1 and Lemma 1 implies that

$$\begin{aligned} \lim _{ J \rightarrow \infty } \inf _n P\bigg ( \sup _t \big | \varGamma _{t}^{(n)-1} \frac{1}{n} \sum _{i=1}^n R^{(i,n)}_{t-}\pmb X_{t-}^{i \intercal } ( \lambda ^{i,D}_t - \gamma ^i_t )\big | > J \bigg ) = 0. \end{aligned}$$
(30)

Moreover, Lemma 2 implies that

$$\begin{aligned} \frac{1}{n} \sum _{i=1}^n R^{(i,n)}_{t-}\pmb X_{t-}^{i \intercal } ( \lambda ^{i,D}_t - \gamma ^i_t ) \end{aligned}$$

converges in probability to

$$\begin{aligned} E_P \big [R^1_{t-} \pmb X_{t-} ^{1 \intercal } ( \lambda ^{1,D}_t - \gamma _t^1 ) \big ] \end{aligned}$$

However, from the innovation theorem we have that this equals

$$\begin{aligned} E_{{{\tilde{P}}}} \big [\pmb X_{t-} ^{1 \intercal } ( \lambda ^{1,D}_t - \gamma _t^1 )\big ] = E_{{{\tilde{P}}}} \big [\pmb X_{t-} ^{1 \intercal } (E_{ {{\tilde{P}}}} [ \lambda ^{1,D}_t |{\mathcal {F}}_{t-}^{1 ,{\mathcal {V}}_0} ] - \gamma _t^1 )\big ] = 0, \end{aligned}$$

since \(\pmb X_{t-}^1\) and \(\gamma _t^1\) are \({\mathcal {F}}_{t-}^{1,{\mathcal {V}}_0}\) measurable. This and (30) enables us to apply Andersen et al. (1993, Lemma II.5.3) to obtain (29). \(\square \)

Lemma 5

Suppose that (II) and (III) from Theorem 1 are satisfied and let \(\pmb M^{(n)}_t := \begin{pmatrix}N_t^{1,D} - \int _0^t \lambda _s^{1,D} ds , \dots , N_t^{n,D} - \int _0^t \lambda _s^{n,D} ds \end{pmatrix}^\intercal \). Then

$$\begin{aligned} \pmb \varXi ^{(n)}_t := \frac{1}{n} \int _0^t \pmb \varGamma ^{(n)-1}_s \pmb X_{s-}^{(n)\intercal } \pmb Y^{(n),D}_{s} d \pmb M_s^{(n)} \end{aligned}$$
(31)

defines a square integrable local martingale with respect to the filtration \({\mathcal {F}}_{s}^{1,{\mathcal {V}}_0 \cup {\mathcal {L}}} \otimes \dots \otimes \mathcal F_{s}^{n,{\mathcal {V}}_0 \cup {\mathcal {L}}} \) and

$$\begin{aligned} \lim _{n \rightarrow \infty } P\bigg ( {{\,\mathrm{Tr}\,}}( \langle \pmb \varXi ^{(n)}\rangle _T) \ge \delta \bigg ) = 0 \end{aligned}$$
(32)

for every \(\delta >0\).

Proof

Writing \(\pmb \lambda ^{(n)}\) for the diagonal matrix with i’th diagonal element equal to \(\lambda ^{i,D}\), we have that

$$\begin{aligned} {{\,\mathrm{Tr}\,}}(\langle \pmb \varXi ^{(n)} \rangle _T) =&\int _0^T \frac{1}{n^2} {{\,\mathrm{Tr}\,}}\bigg (\pmb \varGamma ^{(n)-1}_s \pmb X_{s-}^{(n)\intercal } \pmb Y^{(n),D}_{s} \pmb \lambda _s^{(n)} \pmb Y^{(n),D}_{s} \pmb X_{s-}^{(n)} \pmb \varGamma ^{(n)-1}_s\bigg ) ds. \end{aligned}$$
(33)

Moreover,

$$\begin{aligned}&\frac{1}{n^2} {{\,\mathrm{Tr}\,}}\bigg (\pmb \varGamma ^{(n)-1}_s \pmb X_{s-}^{(n)\intercal } \pmb Y^{(n),D}_{s} \pmb \lambda _s^{(n)} \pmb Y^{(n),D}_{s} \pmb X_{s-}^{(n)} \pmb \varGamma ^{(n)-1}_s\bigg ) \end{aligned}$$
(34)
$$\begin{aligned}&\quad \le \frac{1}{n^2} {{\,\mathrm{Tr}\,}}\bigg (\pmb \varGamma ^{(n)-1}_s \pmb X_{s-}^{(n)\intercal } \pmb Y^{(n),D}_{s} \pmb X_{s-}^{(n)} \pmb \varGamma ^{(n)-1}_s\bigg ) \max _{i \le n} Y_s^{i,D} R^{(i,n)}_{s-} \lambda _s^{i,D} \end{aligned}$$
(35)
$$\begin{aligned}&\quad \le {{\,\mathrm{Tr}\,}}\bigg (\pmb \varGamma ^{(n)-1}_s \bigg ) \big (\frac{1}{n} \max _{i \le n} \lambda _s^{i,D} \big ) \Vert R^{(i,n)}\Vert _\infty \end{aligned}$$
(36)
$$\begin{aligned}&\quad \le {{\,\mathrm{Tr}\,}}\bigg (\pmb \varGamma ^{(n)-1}_s \bigg ) \big (\frac{1}{n} \sum _{i \le n} \lambda _s^{i,D} \big ) \Vert R^{(i,n)}\Vert _\infty \end{aligned}$$
(37)

Now, (III), (37) and Lemma 1 implies that

$$\begin{aligned} \lim _{a \rightarrow \infty } \inf _n P \bigg ( \sup _s \frac{1}{n^2} {{\,\mathrm{Tr}\,}}\bigg (\pmb \varGamma ^{(n)-1}_s \pmb X_{s-}^{(n)\intercal } \pmb Y^{(n),D}_{s} \pmb \lambda _s^{(n)} \pmb Y^{(n),D}_{s} \pmb X_{s-}^{(n)} \pmb \varGamma ^{(n)-1}_s \bigg ) \ge a \bigg ) = 0. \end{aligned}$$

On the other hand, Lemma 3, (36) and (III) gives us that

$$\begin{aligned} \lim _{n\rightarrow \infty } P \bigg ( \frac{1}{n^2} {{\,\mathrm{Tr}\,}}\bigg (\pmb \varGamma ^{(n)-1}_s \pmb X_{s-}^{(n)\intercal } \pmb Y^{(n),D}_{s} \pmb \lambda _s^{(n)} \pmb Y^{(n),D}_{s} \pmb X_{s-}^{(n)} \pmb \varGamma ^{(n)-1}_s \bigg ) \ge \delta \bigg ) = 0 \end{aligned}$$

for every s and \(\delta >0\), so Andersen et al. (1993, Propositon II.5.3) implies that (31) also holds. \(\square \)

Proof of Theorem 1

We have the following decomposition:

$$\begin{aligned} \pmb B^{(n)}_t -\pmb B_t =&\int _0^t (\pmb X_{s-}^{(n)\intercal } \pmb Y^{(n),D}_{s}\pmb X_{s-}^{(n)})^{-1} \big ( \pmb X_{s-}^{(n)\intercal } \pmb Y^{(n),D}_{s} \pmb \lambda ^{(n)}_s - \pmb X_{s-}^{(n)\intercal }\pmb Y^{(n),D}_{s} \pmb X_{s-}^{(n)} b_s \big ) ds \\&+ \int _0^t (\pmb X_{s-}^{(n)\intercal } \pmb Y^{(n),D}_{s} \pmb X_{s-}^{(n)})^{-1} \pmb X_{s-}^{(n)\intercal } \pmb Y^{(n),D}_{s} d \pmb M_s^{(n)} \\ =&\int _0^t \pmb \varGamma ^{(n)-1} \frac{1}{n} \sum _{i=1}^n R^{(i,n)}_{s-}\pmb X_{s-}^{i \intercal } ( \lambda ^{i,D}_s - \gamma ^i_s ) ds + \pmb \varXi _t^{(n)}. \end{aligned}$$

Leglarts inequality (Jacod and Shiryaev 2003, Lemma I.3.30) together with Lemma 5 implies that \(\pmb \varXi ^{(n)}\) converges uniformly in probability to 0. Moreover, Lemma 4 implies that \( \int _0^\cdot \pmb \varGamma ^{(n)-1} \frac{1}{n} \sum _{i=1}^n R^{(i,n)}_{s-}\pmb X_{s-}^{i \intercal } (\lambda ^{i,D}_s - \gamma ^i_s)ds\) converges in same sense to 0, which proves the consistency.

To see that \(\pmb B^{(n)}\) is P-UT, note that it coincides with the sum of \(\pmb B_t\), \(\pmb \varXi ^{(n)}\) and \(\int _0^\cdot \pmb \varGamma _s^{(n)-1} \frac{1}{n} \sum _{i=1}^n R^{(i,n)}_{s-}\pmb X_{s-}^{i \intercal } ( \lambda ^i_s - \gamma ^i_s)ds\). According to Ryalen et al. (2018b, Lemma 1), the latter is P-UT since (III) and Lemma 1 implies (7). Moreover, \(\pmb B_t = \int _0^\cdot \pmb b_s ds\) is clearly P-UT, since \(\pmb b_t\) is uniformly bounded. \(\pmb \varXi ^{(n)}\) is also P-UT since Lemma 5 implies that (8) is satisfied. Finally, as \(\pmb B^{(n)}\) is a sum of three processes that are P-UT, it is necessarily P-UT itself. \(\square \)

Proof of Theorem 2

Lemma 6

Suppose that c. and d. from Theorem 2 are satisfied, and that

  1. (I)
    $$\begin{aligned} \lim _{a \rightarrow \infty } \sup _n P \bigg ( \sup _t \big | \theta ^{(i,n)}_t \big | \ge a \bigg ) = 0, \end{aligned}$$
  2. (II)

    \(\theta _{t-}^{(i,n)}\) converges to \(\theta ^i_t\) in probability for each i and t.

Then we have that \(K^{(i,n)}\) is predictably uniformly tight (P-UT) and

$$\begin{aligned} \lim _{n} P\bigg ( \sup _t \big | K_t^{(i,n)} - K_t^i \big | \ge \epsilon \bigg ) = 0 \end{aligned}$$
(38)

for every i and \(\epsilon > 0\).

Proof

Note that

$$\begin{aligned} K_t^{(i,n)} - K_t^i= & {} \int _0^t ( \theta ^{(i,n)}_{s-} - \theta _s^i ) dN_s^{i,A} + n^{-1/2} \int _0^t Y_s ^i \pmb Z_{s-}^{i\intercal } d\pmb W^{(n)}_s \nonumber \\&- n^{-1/2} \int _0^t Y_s^{i,A} \pmb {{{\tilde{Z}}}}_{s-}^{i\intercal } d \pmb {{{\tilde{W}}}}^{(n)}_s, \end{aligned}$$
(39)

where \(\pmb W_t^{(n)} := n^{1/2}(\pmb H^{(n)}_t - \pmb H_t)\) and \(\pmb {{{\tilde{W}}}}_t^{(n)} :=n^{1/2}( \pmb {{{\tilde{H}}}}^{(n)}_t - \pmb {{{\tilde{H}}}}_t)\) are square-integrable martingales with respect to \({\mathcal {F}}_{t}^{1,{\mathcal {V}}_0 \cup {\mathcal {L}} } \otimes \cdots \otimes {\mathcal {F}}_{t}^{n,{\mathcal {V}}_0 \cup {\mathcal {L}} }\) and \({\mathcal {F}}_{t}^{1,{\mathcal {V}}_0 } \otimes \cdots \otimes {\mathcal {F}}_{t}^{n,{\mathcal {V}}_0 }\) respectively.

Let \(\tau \) be an optional stopping time and note that

$$\begin{aligned}&E\bigg [ \bigg | \int _0^\tau (\theta ^{(i,n)}_{s-} - \theta ^i_s) dN_s^{i,A} \bigg | \bigg ] \le E\bigg [ \int _0^\tau \big |\theta ^{(i,n)}_{s-} - \theta ^i_s \big | dN_s^{i,A} \bigg ] \\&\quad = E\bigg [ \int _0^\tau \big |\theta ^{(i,n)}_{s-} - \theta ^i_s \big | \lambda _s^{i,A} ds \bigg ], \end{aligned}$$

so by Lenglarts inequality, (Jacod and Shiryaev 2003, I.3.30), we see that

$$\begin{aligned} \lim \limits _{n\longrightarrow \infty } P \bigg ( \sup _{t \le T} \bigg | \int _0^t (\theta ^{(i,n)}_{s-} - \theta ^i_s) dN_s^{i,A} \bigg | \ge \epsilon \bigg ) = 0 \end{aligned}$$
(40)

for every \(\epsilon > 0\) if

$$\begin{aligned} \lim \limits _{n\longrightarrow \infty } P \bigg ( \int _0^T \big | \theta ^{(i,n)}_{s-} - \theta ^i_s \big | \lambda _s^{i,A} ds \ge \epsilon \bigg ) = 0, \end{aligned}$$
(41)

for every \(\epsilon > 0\). The latter property holds due to (I), (II) and Andersen et al. (1993, Proposition II.5.3).

Since \(\{ \int _0^t Y_s^{i,A} \pmb Z_{s-}^{i\intercal } d\pmb W^{(n)}_s \}_n\) converges in the skorokhod topology, we have that \(\{ \sup _{t \le T}|\int _0^t Y_s^{i,A} \pmb Z_{s-}^{i\intercal } d\pmb W^{(n)}_s | \}_n\) is tight (Jacod and Shiryaev 2003, Theorem VI.3.21). Therefore, we also get that

$$\begin{aligned} \lim \limits _{n\longrightarrow \infty } P\bigg ( \sup _{t \le T} |n ^{-1/2} \int _0^t Y_s^{i,A} \pmb Z_{s-}^{i\intercal } d\pmb W^{(n)}_s |\ge \epsilon \bigg ) = 0 \end{aligned}$$
(42)

for every \(\epsilon > 0\). For the same reason we also have

$$\begin{aligned} \lim \limits _{n\longrightarrow \infty } P\bigg ( \sup _{t \le T} | n ^{-1/2} \int _0^t Y_s^{i,A} \pmb {{{\tilde{Z}}}}_{s-}^{i \intercal } d\pmb {{{\tilde{W}}}}^{(n)}_s |\ge \epsilon \bigg ) = 0. \end{aligned}$$
(43)

By combining (42), (43) and (40), we obtain that

$$\begin{aligned} \lim \limits _{n\longrightarrow \infty } P\bigg ( \sup _{t \le T} | K_t ^{(i,n)} - K_t^i |\ge \epsilon \bigg ) = 0 \end{aligned}$$
(44)

for every \(\epsilon > 0\).

To see that \(K^{(i,n)}\) is P-UT, note that the compensator of \(\int _0^\cdot (\theta ^{(i,n)}_{s-} - 1) dN_s^{i,A}\) equals \(\int _0^\cdot (\theta ^{(i,n)}_{s-} - 1) \lambda _s^{i,A} ds\) and

$$\begin{aligned} \left\langle \int _0^\cdot (\theta ^{(i,n)}_{s-} - 1) dN_s^{i,A} - \int _0^\cdot (\theta ^{(i,n)}_{s-} - 1) \lambda _s^{i,A} ds \right\rangle _T = \int _0^T (\theta ^{(i,n)}_{s-} - 1)^2 \lambda _s^{i,A} ds. \end{aligned}$$

The assumptions (I) in this Lemma and c) together with Ryalen et al. (2018b, Lemma 1) therefore imply that \(\int _0^\cdot (\theta ^{(i,n)}_{s-} - 1) dN_s^{i,A}\) is P-UT.

To see that \(\int _0^\cdot Y_s ^i \pmb {{{\tilde{Z}}}}_{s-}^{i\intercal } d \pmb {{{\tilde{H}}}}^{(n)}_s \) is P-UT, note that

$$\begin{aligned} \int _0^\cdot Y_s ^i \pmb {{{\tilde{Z}}}}_{s-}^{i\intercal } d \pmb {{{\tilde{H}}}}^{(n)}_s = n^{-1/2} \int _0^\cdot Y_s ^i \pmb {{{\tilde{Z}}}}_{s-}^{i\intercal } d \pmb {{{\tilde{W}}}}^{(n)}_s + \int _0^\cdot Y_s ^i \pmb {{{\tilde{Z}}}}_{s-}^{i\intercal } d \pmb {{{\tilde{H}}}}_s. \end{aligned}$$
(45)

An analogous decompositon yields that \(\int _0^\cdot Y_s ^i \pmb Z_{s-}^{i\intercal } d \pmb H^{(n)}_s \) is P-UT. This means that \(K^{(i,n)}\) is a sum of three processes that are P-UT, and must therefore be P-UT itself. \(\square \)

Lemma 7

Suppose that

  1. (I)

    \(\{\kappa _n\}_n\) increasing sequence of positive numbers such that

    $$\begin{aligned} \lim \limits _{n\longrightarrow \infty } \kappa _n = \infty \text { and } \sup _n \frac{\kappa _n }{\sqrt{n}} < \infty , \end{aligned}$$
  2. (II)

    \(\pmb h_t\) is a bounded and continuous vector valued function,

  3. (III)

    \(\pmb Z^i \) is caglad with \(E[\sup _{t\le T} |\pmb Z_t^i|^3_3 ] < \infty \),

  4. (IV)
    $$\begin{aligned} \lim _{J \rightarrow \infty } \sup _n P \bigg ( {{\,\mathrm{Tr}\,}}\Big ( \big ( \frac{1}{n} \pmb Z^{(n)\intercal }_{t-} \pmb Y^{(n),A}_t \pmb Z^{(n)}_{t-})^{-1} \Big ) \ge J \bigg ) = 0 \end{aligned}$$
    (46)
  5. (V)

    \(Y^{i,A} \pmb Z_{\cdot -}^{i\intercal } \pmb h\) defines the intensity for \(N^{i,A}\) with respect to P and \({\mathcal {F}}_\cdot ^{i,{\mathcal {V}}_0}\). Now,

    $$\begin{aligned} \lim \limits _{n\longrightarrow \infty } P \bigg ( \sup _{ 1/\kappa _n \le t \le T} \Big | \kappa _n \int _{t - 1/\kappa _n } ^t Y_s^{i,A} \pmb Z_{s-}^{i\intercal } d\pmb H_s^{(n)} - Y_t^{i,A} \pmb Z_{t-}^{i \intercal } \pmb h_t \Big | \ge \epsilon \bigg ) = 0.\qquad \end{aligned}$$
    (47)

Proof

Note that

$$\begin{aligned}&\kappa _n \int _{t-1/\kappa _n}^t Y_s^{i,A} \pmb Z_{s-}^{i \intercal } d\pmb H^{(n)}_s - Y_t^{i,A} \pmb Z_{t-}^{i \intercal } \pmb h_t \end{aligned}$$
(48)
$$\begin{aligned}&\quad = \frac{\kappa _n }{ \sqrt{n} } \int _0^t Y_s^{i,A} \pmb Z_{s-}^{i\intercal } d\pmb W^{(n)}_s - \frac{\kappa _n }{ \sqrt{n} } \int _0^{t - 1/\kappa _n } Y_s^{i,A} \pmb Z_{s-}^{i\intercal } d\pmb W^{(n)}_s \end{aligned}$$
(49)
$$\begin{aligned}&\quad \quad + \kappa _n \int _{t-1/\kappa _n }^t Y_s^{i,A} \pmb Z_{s-}^{i \intercal } \pmb h_s ds - Y_t^{i,A} \pmb Z_{t-}^{i\intercal } \pmb h_t. \end{aligned}$$
(50)

The martingale central limit theorem implies that \(\{\pmb W^{(n)} \}\) is a sequence of martingales that converges in law to a continuous Gaussian processes with independent increments, see Andersen et al. (1993). Moreover, Ryalen et al. (2018b, Proposition 1) says that \(\{\pmb W^{(n)}\}_n\) is P-UT.

Therefore Jacod and Shiryaev (2003, Theorem VI 6.22) implies that \( \int _0 ^\cdot Y_s^{i,A} \pmb Z_{s-}^{i\intercal } d \pmb W^{(n)}_s \) converges in law to a continuous process, so it is C-tight. Moreover, from Jacod and Shiryaev (2003, Proposition VI.3.26) we have that

$$\begin{aligned} \lim _{n \longrightarrow \infty } P \bigg ( \sup _{1/\kappa _n \le t \le T} \Big | \int _0 ^t Y_s^{i,A} \pmb Z_{s-}^{i\intercal } d \pmb W^{(n)}_s - \int _0 ^{t - 1/\kappa _n } Y_s^{i,A} \pmb Z_{s-}^{i\intercal } d \pmb W^{(n)}_s \Big | \ge \epsilon \bigg ) = 0\nonumber \\ \end{aligned}$$
(51)

for every \(\epsilon > 0\). The mean value theorem of elementary calculus implies that

$$\begin{aligned} \lim \limits _{n\longrightarrow \infty } \sup _{1/\kappa _n \le t \le T} \Big | \kappa _n \int _{ t - 1/\kappa _n } ^t Y_s^{i,A} \pmb Z_{s-}^{i\intercal } \pmb h_s ds - Y_t^{i,A} \pmb Z_{t-}^{i\intercal } \pmb h_t \Big | = 0 \end{aligned}$$
(52)

P a.s. Combining (51) and (52) yields the claim. \(\square \)

Proof of Theorem 2

Combining (16) and the decomposition in the proof of Lemma 7, we see that

$$\begin{aligned} \lim \limits _{n\longrightarrow \infty } P \bigg ( \sup _{ 1/ \kappa _n \le t \le T} \bigg | \kappa _n \int _{t- 1/\kappa _n} ^t Y_s^{i,A} \pmb {{{\tilde{Z}}}}_{s-}^{i\intercal } d \pmb {{{\tilde{H}}}}^{(n)}_s /{{\tilde{\lambda }}}_t^{i,A} - 1 \bigg | \ge \epsilon \bigg ) = 0. \end{aligned}$$
(53)

Combining (16) and a. we also have

$$\begin{aligned} \lim \limits _{n\longrightarrow \infty } P \bigg ( \sup _{ 1/ \kappa _n \le t \le T} \bigg | \kappa _n \int _{t- 1/\kappa _n} ^t Y_s^{i,A} \pmb Z_{s-}^{i\intercal } d \pmb H^{(n)}_s / \lambda _t^{i,A} - 1 \bigg | \ge \epsilon \bigg ) = 0. \end{aligned}$$
(54)

Whenever \(t \ge 1/ \kappa _n \), we have that by the continuous mapping theorem that

$$\begin{aligned}&\lim \limits _{n\longrightarrow \infty } P \bigg ( \sup _{1/\kappa _n \le t \le T } \big |\theta ^{(i,n)}_t- \theta _t^i \big | \ge \epsilon \bigg ) \\&\quad = \lim \limits _{n\longrightarrow \infty } P \left( \sup _{1/\kappa _n \le t \le T } \big | \theta _t^i \left( \frac{ \kappa _n \int _{t- 1/\kappa _n} ^t Y_s^{i,A} \pmb {{{\tilde{Z}}}}_{s-}^{i\intercal } d \pmb {{{\tilde{H}}}}^{(n)}_s /{{\tilde{\lambda }}}_t^{i,A} }{ \kappa _n \int _{t- 1/\kappa _n} ^t Y_s^{i,A} \pmb Z_{s-}^{i\intercal } d \pmb H^{(n)}_s / \lambda _t^{i,A} } - 1\right) \big | \ge \epsilon \right) \\&\quad = 0. \end{aligned}$$

Since \(\theta ^i\) is right-continuous at \(t= 0\), we have that

$$\begin{aligned} \lim \limits _{n\longrightarrow \infty } P \bigg ( \sup _{0 \le t \le T } \big |\theta ^{(i,n)}_t- \theta _t^i \big | \ge \epsilon \bigg ) = 0. \end{aligned}$$
(55)

Finally, Jacod and Shiryaev (2003, Corollary VI 3.33) implies that \(\{( R^{(i,n)}_0,K^{(i,n)})\}_n\) converges to \((R_0^i, K^i)\) in probability. Since \(K^{(i,n)}\) is P-UT,

$$\begin{aligned} R_t^{(i,n)} = 1 + \int _0^t R_{s-}^{(i,n)} dK_{s}^{(i,n)} \end{aligned}$$

and

$$\begin{aligned} R_t^{i} = 1 + \int _0^t R_{s-}^{i} dK_{s}^{i} \end{aligned}$$

Jacod and Shiryaev (2003, Theorem IX 6.9) implies that \(R^{(i,n)}\) converges to \(R^{i}\) in probability. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryalen, P.C., Stensrud, M.J. & Røysland, K. The additive hazard estimator is consistent for continuous-time marginal structural models. Lifetime Data Anal 25, 611–638 (2019). https://doi.org/10.1007/s10985-019-09468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-019-09468-y

Keywords

Navigation