Skip to main content

Advertisement

Log in

Identification of a novel CCDC22 mutation in a patient with severe Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis and aggressive natural killer cell leukemia

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Aggressive natural killer cell leukemia (ANKL) is a rare neoplasm characterized by the systemic infiltration of Epstein–Barr virus (EBV)-associated NK cells, and rapidly progressive clinical course. We report the case of a 45-year-old man with intellectual disability who developed ANKL, and describe the identification of a novel genetic mutation of coiled-coil domain-containing 22 (CCDC22). He presented with persistent fever, severe pancytopenia, and hepatosplenomegary. Following bone marrow aspiration, numerous hemophagocytes were identified. High EBV viral load was detected in NK cells fractionation by qPCR. The initial diagnosis was EBV-related hemophagocytic lymphohistiocytosis (EBV–HLH). A combination of immunosuppressive drugs and chemotherapy was administered, but was unsuccessful in controlling the disease. Therefore, he was treated with HLA-matched related allogeneic hematopoietic stem cell transplantation. However, his condition deteriorated within 30 days, resulting in fatal outcome. Autopsy revealed many EBV-infected NK cells infiltrating major organs, consistent with ANKL. Furthermore, whole-exome sequencing identified a novel missense mutation of the CCDC22 gene (c.112G>A, p.V38M), responsible for X-linked intellectual disability (XLID). CCDC22 has been shown to play a role in NF-κB activation. Our case suggests that CCDC22 mutation might be implicated in pathogenesis of EBV–HLH and NK-cell neoplasms as well as XLID via possibly affecting NF-κB signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Suzuki R, Suzumiya J, Nakamura S, Aoki S, Notoya A, Ozaki S, et al. Aggressive natural killer-cell leukemia revisited: large granular lymphocyte leukemia of cytotoxic NK cells. Leukemia. 2004;18:763–70.

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki R, Suzumiya J, Yamaguchi M, Nakamura S, Kameoka J, Kojima H, et al. Prognostic factors for mature natural killer (NK) cell neoplasms: aggressive NK cell leukemia and extranodal NK cell lymphoma, nasal type. Ann Oncol. 2010;21:1032–40.

    Article  CAS  PubMed  Google Scholar 

  3. Quintanilla-Martinez L, Ko Y-H, Kimura H, Jaffe ES. Aggressive NK-cell leukemia. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2016. pp. 353–4.

    Google Scholar 

  4. Hamadani M, Kanate AS, DiGilio A, Ahn KW, Smith SM, Lee JW, et al. Allogeneic hematopoietic cell transplantation for aggressive NK cell leukemia. A Center for International Blood and Marrow Transplant Research Analysis. Biol Blood Marrow Transplant. 2017;23:853–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kimura H, Ito Y, Kawabe S, Gotoh K, Takahashi Y, Kojima S, et al. EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: prospective analysis of 108 cases. Blood. 2012;119:673–86.

    Article  CAS  PubMed  Google Scholar 

  6. Henter JI, Horne A, Aricó M, Egeler RM, Filipovich AH, Imashuku S. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–31.

    Article  PubMed  Google Scholar 

  7. Ohga S, Kudo K, Ishii E, Honjo S, Morimoto A, Osugi Y, et al. Hematopoietic stem cell transplantation for familial hemophagocytic lymphohistiocytosis and Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis in Japan. Pediatr Blood Cancer. 2010;54:299–306.

    PubMed  Google Scholar 

  8. Smith MC, Cohen DN, Greig B, Yenamandra A, Vnencak-Jones C, Thompson MA, et al. The ambiguous boundary between EBV-related hemophagocytic lymphohistiocytosis and systemic EBV-driven T cell lymphoproliferative disorder. Int J Clin Exp Pathol. 2014;7:5738–49.

    PubMed  PubMed Central  Google Scholar 

  9. Paik JH, Choe JY, Kim H, Lee JO, Kang HJ, Shin HY, et al. Clinicopathological categorization of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disease: an analysis of 42 cases with an emphasis on prognostic implications. Leuk Lymphoma. 2017;58:53–63.

    Article  CAS  PubMed  Google Scholar 

  10. Voineagu I, Huang L, Winden K, Lazaro M, Haan E, Nelson J, et al. CCDC22: a novel candidate gene for syndromic X-linked intellectual disability. Mol Psychiatry. 2012;17:4–7.

    Article  CAS  PubMed  Google Scholar 

  11. Starokadomskyy P, Gluck N, Li H, Chen B, Wallis M, Maine GN, et al. CCDC22 deficiency in humans blunts activation of proinflammatory NF-κB signaling. J Clin Invest. 2013;123:2244–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Phillips-Krawczak CA, Singla A, Starokadomskyy P, Deng Z, Osborne DG, Li H, et al. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Mol Biol Cell. 2015;26:91–103.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bartuzi P, Billadeau DD, Favier R, Rong S, Dekker D, Fedoseienko A, et al. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat Commun. 2016;7:10961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Imadome K, Shimizu N, Arai A, Miura O, Watanabe K, Nakamura H, et al. Coexpression of CD40 and CD40 ligand in Epstein–Barr virus-infected T and NK cells and their role in cell survival. J Infect Dis. 2005;192:1340–8.

    Article  CAS  PubMed  Google Scholar 

  15. Fu L, Wang J, Wei N, Wu L, Wang Y, Huang W, et al. Allogeneic hematopoietic stem-cell transplantation for adult and adolescent hemophagocytic lymphohistiocytosis: a single center analysis. Int J Hematol. 2016;104:628–35.

    Article  PubMed  Google Scholar 

  16. Nishi M, Nishimura R, Suzuki N, Sawada A, Okamura T, Fujita N, et al. Reduced-intensity conditioning in unrelated donor cord blood transplantation for familial hemophagocytic lymphohistiocytosis. Am J Hematol. 2012;87:637–9.

    Article  PubMed  Google Scholar 

  17. Tamura S, Higuchi K, Tamaki M, Inoue C, Awazawa R, Mitsuki N, et al. Novel compound heterozygous DNA ligase IV mutations in an adolescent with a slowly-progressing radiosensitive-severe combined immunodeficiency. Clin Immunol. 2015;160:255–60.

    Article  CAS  PubMed  Google Scholar 

  18. Haji S, Shiratsuchi M, Matsushima T, Takamatsu A, Tsuda M, Tsukamoto Y, et al. Achievement of disease control with donor-derived EB virus-specific cytotoxic T cells after allogeneic peripheral blood stem cell transplantation for aggressive NK-cell leukemia. Int J Hematol. 2017;105:540–4.

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Wang Y, Wu L, Zhang J, Lai W, Wang Z. PEG-aspargase and DEP regimen combination therapy for refractory Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis. J Hematol Oncol. 2016;9:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sato E, Ohga S, Kuroda H, Yoshiba F, Nishimura M, Nagasawa M, et al. Allogeneic hematopoietic stem cell transplantation for Epstein-Barr virus-associated T/natural killer-cell lymphoproliferative disease in Japan. Am J Hematol. 2008;83:721–7.

    Article  PubMed  Google Scholar 

  21. Ito T, Makishima H, Nakazawa H, Kobayashi H, Shimodaira S, Nakazawa Y, et al. Promising approach for aggressive NK cell leukaemia with allogeneic haematopoietic cell transplantation. Eur J Haematol. 2008;81:107–11.

    Article  PubMed  Google Scholar 

  22. Jung KS, Cho SH, Kim SJ, Ko YH, Kang ES, Kim WS. L-asparaginase-based regimens followed by allogeneic hematopoietic stem cell transplantation improve outcomes in aggressive natural killer cell leukemia. J Hematol Oncol. 2016;9:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kolanczyk M, Krawitz P, Hecht J, Hupalowska A, Miaczynska M, Marschner K, et al. Missense variant in CCDC22 causes X-linked recessive intellectual disability with features of Ritscher-Schinzel/3C syndrome. Eur J Hum Genet. 2015;23:633–8.

    Article  CAS  PubMed  Google Scholar 

  24. Gorlin RJ, Cohen M, Hennekam RCM (2001) Syndromes of the head and neck. 4th ed. Oxford: Oxford University Press.

    Google Scholar 

  25. Boztug H, Hirschmugl T, Holter W, Lakatos K, Kager L, Trapin D, et al. NF-κB1 haploinsufficiency causing immunodeficiency and EBV-driven lymphoproliferation. J Clin Immunol. 2016;36:533–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinobu Tamura.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, Y., Nishikawa, A., Iwahashi, Y. et al. Identification of a novel CCDC22 mutation in a patient with severe Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis and aggressive natural killer cell leukemia. Int J Hematol 109, 744–750 (2019). https://doi.org/10.1007/s12185-019-02595-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-019-02595-0

Keywords

Navigation