Skip to main content
Log in

Anatomic Magnetic Resonance Imaging of the Developing Child and Adolescent Brain and Effects of Genetic Variation

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging studies have begun to map effects of genetic variation on trajectories of brain development. Longitudinal studies of children and adolescents demonstrate a general pattern of childhood peaks of gray matter followed by adolescent declines, functional and structural increases in connectivity and integrative processing, and a changing balance between limbic/subcortical and frontal lobe functions, which extends well into young adulthood. Twin studies have demonstrated that genetic factors are responsible for a significant amount of variation in pediatric brain morphometry. Longitudinal studies have shown specific genetic polymorphisms affect rates of cortical changes associated with maturation. Although over-interpretation and premature application of neuroimaging findings for diagnostic purposes remains a risk, converging data from multiple imaging modalities is beginning to elucidate the influences of genetic factors on brain development and implications of maturational changes for cognition, emotion, and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen, L. S., Richey, M. F., Chai, Y. M., & Gorski, R. A. (1991). Sex differences in the corpus callosum of the living human being. The Journal of Neuroscience, 11, 933–942.

    CAS  PubMed  Google Scholar 

  • Anderson, B. J., Eckburg, P. B., & Relucio, K. I. (2002). Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learning & Memory, 9(1), 1–9.

    Article  Google Scholar 

  • Baare, W. F., Hulshoff Pol, H. E., Boomsma, D. I., Posthuma, D., de Geus, E. J., Schnack, H. G., et al. (2001). Quantitative genetic modeling of variation in human brain morphology. Cerebral Cortex, 11(9), 816–824.

    Article  CAS  PubMed  Google Scholar 

  • Berlucchi, G. (1981). Interhemispheric asymmetries in visual discrimination: a neurophysiological hypothesis. Documenta ophthalmologica. Proceedings series, 30, 87–93.

    Google Scholar 

  • Braitenberg, V. (2001). Brain size and number of neurons: an exercise in synthetic neuroanatomy. Journal of Computational Neuroscience, 10(1), 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Clark, A. S., MacLusky, N. J., & Goldman-Rakic, P. S. (1988). Androgen binding and metabolism in the cerebral cortex of the deveoping rhesus monkey. Endocrinology, 123, 932–940.

    Article  CAS  PubMed  Google Scholar 

  • Cook, N. D. (1986). The brain code. Mechanisms of information transfer and the role of the corpus callosum. London: Methuen.

    Google Scholar 

  • Cowell, P. E., Allen, L. S., Zalatimo, N. S., & Denenberg, V. H. (1992). A developmental study of sex and age interactions in the human corpus callosum. Developmental brain research, 66, 187–192.

    Article  CAS  PubMed  Google Scholar 

  • Darlington, R. B., Dunlop, S. A., & Finlay, B. L. (1999). Neural development in metatherian and eutherian mammals: variation and constraint. The Journal of Comparative Neurology, 411(3), 359–368.

    Article  CAS  PubMed  Google Scholar 

  • Deutsch, G. K., Dougherty, R. F., Bammer, R., Siok, W. T., Gabrieli, J. D., & Wandell, B. (2005). Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex, 41(3), 354–363.

    Article  PubMed  Google Scholar 

  • Diener, E., Sandvik, E., & Larsen, R. F. (1985). Age and sex effects for affect intensity. Developmental Psychology, 21, 542–546.

    Article  Google Scholar 

  • Fields, R. (2008). Oligodendrocytes changing the rules: action potentials in glia and oligodendrocytes controlling action potentials. The Neuroscientist, 14(6), 540–543.

    Article  PubMed  Google Scholar 

  • Finlay, B. L., & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584.

    Article  CAS  PubMed  Google Scholar 

  • Fishell, G. (1997). Regionalization in the mammalian telencephalon. Current Opinion in Neurobiology, 7(1), 62–69.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399–433.

    Google Scholar 

  • Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., et al. (1996). Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex, 6(4), 551–560.

    Article  CAS  PubMed  Google Scholar 

  • Giedd, J. N., Shaw, P., Wallace, G., Gogtay, N., & Lenroot, R. K. (2006). Anatomic brain imaging studies of normal and abnormal brain development in children and adolescents. In D. Cicchetti & D. J. Cohen (Eds.), Developmental psychopathology (2nd ed., Vol. 2, pp. 127–194). Hoboken: Wiley.

    Google Scholar 

  • Gogtay, N., Giedd, J.N., Lusk, L., Hayashi, K.M., Greenstein, D., Vaituzis, A.C., et al. (2004). Dynamic mapping of human cortical development during childhood though early adulthood. Proceedings of the National Academy of Sciences 101, 8174–8179.

    Google Scholar 

  • Hulshoff Pol, H. E., Schnack, H. G., Posthuma, D., Mandl, R. C., Baare, W. F., van Oel, C., et al. (2006). Genetic contributions to human brain morphology and intelligence. The Journal of Neuroscience, 26(40), 10235–10242.

    Article  PubMed  Google Scholar 

  • Huttenlocher, P. R. (1994). Synaptogenesis in human cerebral cortex. In G. Dawson & K. Fischer (Eds.), Human behavior and the developing brain (pp. 137–152). New York: Guilford.

    Google Scholar 

  • Jerslid, A. T. (1963). The psychology of adolescence (2nd ed.). New York: Macmillan.

    Google Scholar 

  • Kendler, K. S., Walters, E. E., Truett, K. R., Heath, A. C., Neale, M. C., Martin, N. G., et al. (1994). Sources of individual differences in depressive symptoms: analysis of two samples of twins and their families. The American Journal of Psychiatry, 151(11), 1605–1614.

    CAS  PubMed  Google Scholar 

  • Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., et al. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage, 36(4), 1065–1073.

    Article  PubMed  Google Scholar 

  • Lenroot, R. K., Schmitt, J. E., Ordaz, S. J., Wallace, G. L., Neale, M. C., Lerch, J. P., et al. (2009). Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping, 30(1), 163–174.

    Article  PubMed  Google Scholar 

  • Levy, J. (1985). Interhemispheric collaboration: Single mindedness in the asymmetric brain. In C. T. Best (Ed.), Hemisphere function and collaboration in the child (pp. 11–32). New York: Academic.

    Google Scholar 

  • Lewontin, R. C. (1974). Analysis of variance and analysis of causes. American Journal of Human Genetics, 26(3), 400–411.

    CAS  PubMed  Google Scholar 

  • Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A. M., et al. (2006). Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cerebral Cortex, 16(4), 553–560.

    Article  PubMed  Google Scholar 

  • McGue, M. (2010). The end of behavioral genetics? Behavior Genetics, 40(3), 284–296.

    Article  PubMed  Google Scholar 

  • Meaney, M. J. (2010). Epigenetics and the biological definition of gene x environment interactions. [Review]. Child Development, 81(1), 41–79.

    Article  PubMed  Google Scholar 

  • Morse, J. K., Scheff, S. W., & DeKosky, S. T. (1986). Gonadal steroids influence axonal sprouting in the hippocampal dentate gyrus: a sexually dimorphic response. Experimental Neurology, 94, 649–658.

    Article  CAS  PubMed  Google Scholar 

  • Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16(7), 1227–1233.

    Article  PubMed  Google Scholar 

  • Neale, M. C., & Maes, H. H. M. (2005). Methodology for genetic studies of twins and families.

  • Nolte, J. (1993). Olfactory and limbic systems. In R. Farrell (Ed.), The human brain. An introduction to its functional anatomy (3rd ed., pp. 397–413). St. Louis: Mosby-Year Book.

    Google Scholar 

  • Peper, J. S., Brouwer, R. M., Van Baal, G. C., Schnack, H. G., Van Leeuwen, M., Boomsma, D. I., et al. (2009). Does having a twin-brother make for a bigger brain? European Journal of Endocrinology.

  • Posthuma, D., De Geus, E., Neale, M., Hulshoff Pol, H., Baare, W., Kahn, R., et al. (2000). Multivariate genetic analysis of brain structure in an extended twin design. Behavior Genetics, 30(4), 311–319.

    Article  CAS  PubMed  Google Scholar 

  • Posthuma, D., De Geus, E. J., Baare, W. F., Hulshoff Pol, H. E., Kahn, R. S., & Boomsma, D. I. (2002). The association between brain volume and intelligence is of genetic origin. Nature Neuroscience, 5(2), 83–84.

    Article  CAS  PubMed  Google Scholar 

  • Pujol, J., Vendrell, P., Junque, C., Marti-Vilalta, J. L., & Capdevila, A. (1993). When does human brain development end? Evidence of corpus callosum growth up to adulthood. Annals of Neurology, 34, 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Rakic, P., & Caviness, V. S., Jr. (1995). Cortical development: view from neurological mutants two decades later. Neuron, 14(6), 1101–1104.

    Article  CAS  PubMed  Google Scholar 

  • Rauch, R. A., & Jinkins, J. R. (1994). Analysis of cross-sectional area measurements of the corpus callosum adjusted for brain size in male and female subjects from childhood to adulthood. Behavioural Brain Research, 64, 65–78.

    Article  CAS  PubMed  Google Scholar 

  • Raznahan, A., Lee, Y., Long, R., Greenstein, D., Clasen, L., Addington, A., et al. (2010). Common functional polymorphisms of DISC1 and cortical maturation in typically developing children and adolescents. Molecular Psychiatry.

  • Rimol, L. M., Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Fischl, B., Franz, C. E., et al. (2010). Cortical thickness is influenced by regionally specific genetic factors. Biological Psychiatry, 67(5), 493–499.

    Article  CAS  PubMed  Google Scholar 

  • Riva, D., & Giorgi, C. (2000). The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain, 123(Pt 5), 1051–1061.

    Article  PubMed  Google Scholar 

  • Rutter, M. (2007). Gene-environment interdependence. Developmental Science, 10(1), 12–18.

    Article  PubMed  Google Scholar 

  • Scarr, S., & McCartney, K. (1983). How people make their own environments: a theory of genotype greater than environment effects. Child Development, 54(2), 424–435.

    CAS  PubMed  Google Scholar 

  • Schmahmann, J. D. (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 16(3), 367–378.

    PubMed  Google Scholar 

  • Schmahmann, J. D. (2010). The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychology Review, 20(3), 236–260.

    Article  PubMed  Google Scholar 

  • Schmitt, J., Lenroot, R., Wallace, G., Ordaz, S., Taylor, K., Kabani, N., et al. (2007). Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cerebral Cortex, 18(8), 1737–1747.

    Article  Google Scholar 

  • Shanks, M. F., Rockel, A. J., & Powel, T. P. S. (1975). The commissural fiber connections of the primary somatic sensory cortex. Brain Research, 98, 166–171.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, P., Lerch, J., Greenstein, D., Sharp, W., Clasen, L., Evans, A., et al. (2006). Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 63(5), 540–549.

    Article  PubMed  Google Scholar 

  • Shaw, P., Lerch, J. P., Pruessner, J. C., Taylor, K. N., Rose, A. B., Greenstein, D., et al. (2007). Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study. Lancet Neurology, 6(6), 494–500.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, P., Wallace, G. L., Addington, A., Evans, A., Rapoport, J., & Giedd, J. N. (2009). Effects of the Val158Met catechol-O-methyltransferase polymorphism on cortical structure in children and adolescents. Molecular Psychiatry, 14(4), 348–349.

    Article  CAS  PubMed  Google Scholar 

  • Sowell, E. R., Thompson, P. M., Tessner, K. D., & Toga, A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. The Journal of Neuroscience, 21(22), 8819–8829.

    CAS  PubMed  Google Scholar 

  • Stead, J. D., Neal, C., Meng, F., Wang, Y., Evans, S., Vazquez, D. M., et al. (2006). Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum. The Journal of Neuroscience, 26(1), 345–353.

    Article  CAS  PubMed  Google Scholar 

  • Sun, T., Patoine, C., Abu-Khalil, A., Visvader, J., Sum, E., Cherry, T. J., et al. (2005). Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science, 308(5729), 1794–1798.

    Article  CAS  PubMed  Google Scholar 

  • Tabery, J. (2009). Interactive predispositions: gene-environment interactions-from IQ controversy to genetic screening. Behavior Genetics, 39(6), 683–683.

    Google Scholar 

  • Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404(6774), 190–193.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V. P., Huttunen, M., et al. (2001). Genetic influences on brain structure. Nature Neuroscience, 4(12), 1253–1258.

    Article  CAS  PubMed  Google Scholar 

  • Tiemeier, H., Lenroot, R. K., Greenstein, D. K., Tran, L., Pierson, R., & Giedd, J. N. (2009). Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage.

  • Tramo, M. J., Loftus, W. C., Stukel, T. A., Green, R. L., Weaver, J. B., & Gazzaniga, M. S. (1998). Brain size, head size, and intelligence quotient in monozygotic twins. Neurology, 50(5), 1246–1252.

    CAS  PubMed  Google Scholar 

  • Tunbridge, E. M., Weickert, C. S., Kleinman, J. E., Herman, M. M., Chen, J., Kolachana, B. S., et al. (2007). Catechol-o-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan. Cerebral Cortex, 17(5), 1206–1212.

    Article  CAS  PubMed  Google Scholar 

  • Vreeke, G. J. (2000). Nature, nurture and the future of the analysis of variance. Human Development, 43(1), 32–45.

    Article  Google Scholar 

  • Wallace, G., Eric Schmitt, J., Lenroot, R., Viding, E., Ordaz, S., Rosenthal, M., et al. (2006). A pediatric twin study of brain morphometry. Journal of child psychology and psychiatry, 47(10), 987–993.

    Article  PubMed  Google Scholar 

  • Wallace, G. L., Lee, N. R., Prom-Wormley, E. C., Medland, S. E., Lenroot, R. K., Clasen, L. S., et al. (2010). A bivariate twin study of regional brain volumes and verbal and nonverbal intellectual skills during childhood and adolescence. Behavior Genetics, 40(2), 125–134.

    Article  PubMed  Google Scholar 

  • Webster, M. J., Herman, M. M., Kleinman, J. E., & Shannon Weickert, C. (2006). BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expression Patterns, 6(8), 941–951.

    Article  CAS  PubMed  Google Scholar 

  • Wechsler, D. (1974). Wechsler intelligence scale for children—revised. New York: Psychological.

    Google Scholar 

  • Weickert, C. S., Webster, M. J., Gondipalli, P., Rothmond, D., Fatula, R. J., Herman, M. M., et al. (2007). Postnatal alterations in dopaminergic markers in the human prefrontal cortex. Neuroscience, 144(3), 1109–1119.

    Article  CAS  PubMed  Google Scholar 

  • White, T., Andreasen, N., & Nopoulos, P. (2002). Brain volumes and surface morphology in monozygotic twins. Cerebral Cortex, 12(5), 486.

    Article  PubMed  Google Scholar 

  • Whitford, T. J., Rennie, C. J., Grieve, S. M., Clark, C. R., Gordon, E., & Williams, L. M. (2006). Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Human Brain Mapping.

  • Wright, S. (1968). Evolution and the genetics of populations. I. Genetic and biometric foundations. Chicago: University of Chicago Press.

    Google Scholar 

  • Wright, I. C., Sham, P., Murray, R. M., Weinberger, D. R., & Bullmore, E. T. (2002). Genetic contributions to regional variability in human brain structure: methods and preliminary results. Neuroimage, 17(1), 256–271.

    Article  CAS  PubMed  Google Scholar 

  • Zaidel, D., & Sperry, R. W. (1974). Memory impairment after commissurotomy in man. Brain, 97, 263–272.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Program of the National Institute of Mental Health, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay N. Giedd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giedd, J.N., Stockman, M., Weddle, C. et al. Anatomic Magnetic Resonance Imaging of the Developing Child and Adolescent Brain and Effects of Genetic Variation. Neuropsychol Rev 20, 349–361 (2010). https://doi.org/10.1007/s11065-010-9151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-010-9151-9

Keywords

Navigation