Skip to main content

Advertisement

Log in

Increased maize growth and P uptake promoted by arbuscular mycorrhizal fungi coincide with higher foliar herbivory and larval biomass of the Fall Armyworm Spodoptera frugiperda

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Most plant species naturally associate with arbuscular mycorrhizal fungi (AMF), which are known to promote crop nutrition and health in agroecosystems. However, information on how mycorrhizal associations affect plant biotic interactions that occur aboveground with foliar herbivores is limited and needs to be further addressed for the development of pest management strategies. With the objective to examine the influence of maize mycorrhizas on foliar herbivory caused by larvae of Spodoptera frugiperda, a serious pest in maize agroecosystems, we performed a fully factorial greenhouse pot experiment with three factors: Maize genotype (Puma and Milpal H318), AMF (with and without AMF, and without AMF with mineral P) and Insect herbivory (with and without S. frugiperda). Main results showed that inoculation with AMF improved plant growth and foliar P concentration, which coincided with increased foliar damage from herbivory and higher biomass of S. frugiperda larvae. A significant positive correlation between shoot P concentration and larval biomass was also observed. Finally, foliar herbivory by S. frugiperda slightly increased and decreased AMF root colonization in Puma and H318, respectively. In conclusion, our results show that maize plant benefits from AMF in terms of promotion of growth and nutrition, and may also increase the damage caused from insects by improving the food quality of maize leaves for larval growth, which seems to be linked to increased P uptake by the maize mycorrhizal association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altieri M, Nicholls C (2004) Biodiversity and pest management in agroecosystems. CRC Press, Boca Raton

    Google Scholar 

  • Alvarado-Herrejón M, Larsen J, Gavito ME, Jaramillo-López PF, Vestberg M, Martínez-Trujillo M, Carreón-Abud Y (2019) Relation between arbuscular mycorrhizal fungi, root-lesion nematodes and soil characteristics in maize agroecosystems. Appl Soil Ecol 135:1–8

    Google Scholar 

  • Barto EK, Rillig MC (2010) Does herbivory really suppress mycorrhiza? A meta-analysis. J Ecol 98:745–753

    Google Scholar 

  • Bennetzen JL, Hake SC (eds) (2009) Handbook of maize: genetics and genomics. Springer Science & Business Media, Berlin

    Google Scholar 

  • Bernaola L, Cosme M, Schneider RW, Stout M (2018) Belowground inoculation with arbuscular mycorrhizal fungi increases local and systemic susceptibility of rice plants to different pest organisms. Front Plant Sci 9:747

    PubMed  PubMed Central  Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Sparks DL (ed) Methods of soil analysis, part 3. Soil Science Society of America, Madison, pp 1085–1121

    Google Scholar 

  • Chishaki N, Horiguchi T (1997) Responses of secondary metabolism in plants to nutrient deficiency. Soil Sci Plant Nutr 43:987–991

    CAS  Google Scholar 

  • Clancy KM, King R (1993) Defining the western spruce budworm’s nutritional niche with response surface methodology. Ecology 74:442–454

    Google Scholar 

  • Deng Y, Feng G, Chen X, Zou C (2017) Arbuscular mycorrhizal fungal colonization is considerable at optimal Olsen-P levels for maximized yields in an intensive wheat–maize cropping system. Field Crop Res 209:1–9

    Google Scholar 

  • Domínguez CA, Dirzo R (1995) Rainfall and flowering synchrony in a tropical shrub: variable selection on the flowering time of Erythroxylum havanense. Evol Ecol 9:204–216

    Google Scholar 

  • Estiarte M, Filella I, Serra J, Penuelas J (1994) Effects of nutrient and water stress on leaf phenolic content of peppers and susceptibility to generalist herbivore Helicoverpa armigera (Hubner). Oecol 99:387–391

    CAS  Google Scholar 

  • Fortier E, Desjardins Y, Tremblay N, Bélec C, Côté M (2006) Influence of irrigation and nitrogen fertilization on broccoli polyphenolics concentration. In International Symposium on Vegetable Safety and Human Health 856, pp 55–62

  • Gange AC (2007) Insect mycorrhizal interactions: patterns, processes and consequences. In: Ohgushi T et al (eds) Ecological communities: plant mediation in indirect interaction webs. Cambridge University Press, Cambridge, pp 124–143

    Google Scholar 

  • Gange AC, Bower E, Brown VK (2002) Differential effects of insect herbivory on arbuscular mycorrhizal colonization. Oecol 131:103–112

    Google Scholar 

  • García-Rodríguez Y, Bravo-Monzón A, Martínez-Díaz Y, Torres-Gurrola G, Espinosa-García FJ (2012) Variación Fitoquímica Defensiva en Ecosistemas Terrestres. In: Rojas JC, Malo EA (eds) Temas Selectos en Ecología Química de Insectos. El Colegio de la Frontera sur, Lerma Campeche, pp 217–252 446 p

    Google Scholar 

  • Garrido E, Bennett AE, Fornoni J, Strauss SY (2010) Variation in arbuscular mycorrhizal fungi colonization modifies the expression of tolerance to above-ground defoliation. J Ecol 98:43–49

    Google Scholar 

  • Gavito ME, Miller MH (1998) Changes in mycorrhiza development in maize induced by crop management practices. Plant Soil 198:185–192

    CAS  Google Scholar 

  • Gehring C, Bennett A (2009) Mycorrhizal fungal–plant–insect interactions: the importance of a community approach. Environ Entomol 38:93–102

    PubMed  Google Scholar 

  • Gershenzon J (1984) Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Phytochemical adaptations to stress. Springer, Boston, pp 273–320

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    PubMed  Google Scholar 

  • Giovannetti M, Mosse (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Google Scholar 

  • Goverde M, van der Heijden M, Wiemken A, Sanders I, Erhardt A (2000) Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecol 125:362–369

    CAS  Google Scholar 

  • Heinen R, Biere A, Harvey JA, Bezemer M (2018) Effects of soil organisms on aboveground plant–insect interactions in the field: patterns, mechanisms and the role of methodology. Front Ecol Evol 6:106

    Google Scholar 

  • Hoffmann D, Vierheilig H, Peneder S, Schausberger P (2011) Mycorrhiza modulates aboveground tri-trophic interactions to the fitness benefit of its host plant. Ecol Entomol 36:574–581

    Google Scholar 

  • Huberty AF, Denno RF (2006) Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies. Oecol 149:444–455

    Google Scholar 

  • Janssen JAM (1994) Impact of the mineral composition and water content of excised maize leaf sections on fitness of the African armyworm, Spodoptera exempta (Lepidoptera: Noctuidae). Bull Entomol Res 84:233–245

    Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecol 90:2088–2097

    Google Scholar 

  • Kormanik PP, McGraw AC (1982) Quantification of vesicular arbuscular mycorrhiza in plant roots. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St Paul, pp 37–45

    Google Scholar 

  • Kumar A, Verma JK (2018) Does plant–microbe interaction confer stress tolerance in plants?: a review. Microbiol Res 207:41–52

    CAS  PubMed  Google Scholar 

  • López-Carmona DA (2013) Respuesta de micorrizas de maíz (Zea mays) a un gradiente de estrés hídrico y fertilización mineral. MSc thesis. Universidad Nacional Autónoma de México. 77 p

  • López-Carmona DA, Alarcón A, Martínez-Romero E, Peña-Cabriales JJ, Larsen J (2019) Maize plant growth response to whole rhizosphere microbial communities in different mineral N and P fertilization scenarios. Rhizosphere 9:38–46

    Google Scholar 

  • Machado RA, Ferrieri AP, Robert CA, Glauser G, Kallenbach M, Baldwin IT, Erb M (2013) Leaf-herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. New Phytol 200:1234–1246

    CAS  PubMed  Google Scholar 

  • Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Ann Rev Ecol Syst 11:119–161

    Google Scholar 

  • Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol 68:485–512

    CAS  PubMed  Google Scholar 

  • Médiène S, Valantin-Morison M, Sarthou JP, De Tourdonnet S, Gosme M, Bertrand M, Pelosi C (2011) Agroecosystem management and biotic interactions: a review. Agron Sustain Dev 31:491–514

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    CAS  Google Scholar 

  • Murrell EG, Ray S, Lemmon ME, Luthe DS, Kaye JP (2019) Cover crop species affect mycorrhizae-mediated nutrient uptake and pest resistance in maize. Renew Agr food Syst:1–8

  • Núñez-Farfán J, Fornoni J, Valverde PL (2007) The evolution of resistance and tolerance to herbivores. Annu Rev Ecol Evol Syst 38:541–566

    Google Scholar 

  • Pedigo LP, Rice M (2009) Entomology and pest management. Pearson, London

    Google Scholar 

  • Perkins MC, Woods HA, Harrison JF, Elser JJ (2004) Dietary phosphorus affects the growth of larval Manduca sexta. Arch Insect Biochem Physiol 55:153–168

    CAS  PubMed  Google Scholar 

  • Peterson RKD, Varella AC, Higley LG (2017) Tolerance: the forgotten child of plant resistance. PeerJ. https://doi.org/10.7717/peerj.3934

    PubMed  PubMed Central  Google Scholar 

  • Poitout S, Bues R (1974) Elevage de chenilles de vingt-huit espèces de Lépidoptères Noctuidae et de deux espèces d'Arctiidae sur milieu artificiel simple. Particularités de l'élevage selon les espèces In Annales de zoologie: Ecologie animale

  • Pozo MJ, Azcón AC (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    CAS  PubMed  Google Scholar 

  • Ramírez Gómez M, Rodríguez A (2012) Mecanismos de defensa y respuestas de las plantas en la interacción micorrícica: una revisión. Rev Colomb Biotecnol 14:271–284

    Google Scholar 

  • Ryan MH, Graham JH (2018) Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol 220:1092–1107

    PubMed  Google Scholar 

  • Sarabia M, Cornejo P, Azcón R, Carreón-Abud Y, Larsen J (2017) Mineral phosphorus fertilization modulates interactions between maize, rhizosphere yeasts and arbuscular mycorrhizal fungi. Rhizosphere 4:89–93

    Google Scholar 

  • Sarabia M, Jakobsen I, Grønlund M, Carreon-Abud Y, Larsen J (2018) Rhizosphere yeasts improve P uptake of a maize arbuscular mycorrhizal association. Appl Soil Ecol 125:18–25

    Google Scholar 

  • Sawers RJ, Svane SF, Quan C, Grønlund M, Wozniak B, Gebreselassie MN, Jakobsen I (2017) Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol 214:632–643

    CAS  PubMed  Google Scholar 

  • Slansky F Jr (1993) Nutritional ecology: the fundamental quest for nutrients. In: Stamp NE, Casey TM (eds) Caterpillars, ecological and evolutionary constraints on foraging. Chapman & Hall, New York, pp 29–91

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Cambridge

    Google Scholar 

  • St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. Mycorrhizae in crop production. Haworth, New York, pp 67–122

    Google Scholar 

  • Tang X, Ma Y, Hao X, Li X, Li J, Huang S, Yang X (2009) Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant Soil 323:143–151

    CAS  Google Scholar 

  • Tingey WM, Singh SR (1980) Environmental factors influencing the magnitude and expression of resistance. In: Maxwell FG, Jennings PR (eds) Breeding plants resistant to insects. Wiley, New York, pp 89–113

    Google Scholar 

  • Vannette RL, Hunter MD (2009) Mycorrhizal fungi as mediators of defense against insect pests in agricultural systems. Agric For Entomol 11:351–358

    Google Scholar 

  • Veresoglou SD, Rillig MC (2012) Suppression of fungal nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217

    PubMed  Google Scholar 

  • Wang S, Ding T, Xu M, Zhang B (2018) Bidirectional interactions between beet armyworm and its host in response to different fertilization conditions. PLoS One 13:e0190502

    PubMed Central  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Google Scholar 

  • Zitlalpopoca-Hernandez G, Najera-Rincon MB, del-Val E, Alarcon A, Jackson T, Larsen J (2017) Multitrophic interactions between maize mycorrhizas, the root feeding insect Phyllophaga vetula and the entomopathogenic fungus Beauveria bassiana. Appl Soil Ecol 115:38–43

    Google Scholar 

Download references

Acknowledgments

We thank the Biological Sciences Postgraduate program of the National Autonomous University of Mexico for facilitating PhD training for Raúl Omar Real Santillan. We also thank the National Council for Science and Technology (CONACYT) for funding the basic science project 179319. Finally, we extend our gratitude to Maribel Nava Mendoza for excellent technical support for P and N measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Larsen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Real-Santillán, R.O., del-Val, E., Cruz-Ortega, R. et al. Increased maize growth and P uptake promoted by arbuscular mycorrhizal fungi coincide with higher foliar herbivory and larval biomass of the Fall Armyworm Spodoptera frugiperda. Mycorrhiza 29, 615–622 (2019). https://doi.org/10.1007/s00572-019-00920-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-019-00920-3

Keywords

Navigation