Skip to main content
Log in

Design and Utility of a Point-of-Care Microfluidic Platform to Assess Hematocrit and Blood Coagulation

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Purpose

To develop a small volume whole blood analyzer capable of measuring the hematocrit and coagulation kinetics of whole blood.

Methods and Results

A co-planar microfluidic chamber designed to facilitate self-driven capillary action across an internal electrical chip was developed and used to measure the electric parameters of whole human blood that had been anticoagulated or allowed to clot. To promote blood clotting, select chip surfaces were coated with a prothrombin time (PT) reagent containing lipidated tissue factor (TF), which activates the extrinsic pathway of coagulation to promote thrombin generation and fibrin formation. Whole human blood was added to the microfluidic device, and voltage changes within the platform were measured and interpreted using basic resistor-capacitor (RC) circuit and fluid dynamics theory. Upon wetting of the sensing zone, a circuit between two co-planar electrodes within the sensing zone was closed to generate a rapid voltage drop from baseline. The voltage then rose due to sedimentation of red blood cells (RBC) in the sensing zone. For anticoagulated blood samples, the time for the voltage to return to baseline was dependent on hematocrit. In the presence of coagulation, the initiation of fibrin formation in the presence of the PT reagent prevented the return of voltage to baseline due to the reduced packing of RBCs in the sensing zone.

Conclusions

The technology presented in this study has potential for monitoring the hematocrit and coagulation parameters of patient samples using a small volume of whole blood, suggesting it may hold clinical utility as a point-of-care test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aarts, P. A., S. A. van den Broek, G. W. Prins, G. D. Kuiken, J. J. Sixma, and R. M. Heethaar. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arterioscler. Dallas Tex 8:819–824, 1988.

    Article  Google Scholar 

  2. Ashrafuzzaman, M., and J. Tuszynski. Structure of membranes. In: Membrane Biophysics. Heidelberg: Springer, 2012, pp. 9–30.

  3. Bergmeier, W., and R. O. Hynes. Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harb. Perspect. Biol. 2012. https://doi.org/10.1101/cshperspect.a005132.

    Google Scholar 

  4. Billett, H. H. Hemoglobin and hematocrit. In: Clinical Methods: The History, Physical, and Laboratory Examinations3rd, edited by H. K. Walker, W. D. Hall, and J. W. Hurst. Boston: Butterworths, 1990.

    Google Scholar 

  5. Brækkan, S. K., E. B. Mathiesen, I. Njølstad, T. Wilsgaard, and J.-B. Hansen. Hematocrit and risk of venous thromboembolism in a general population. The Tromsø study. Haematologica 95:270–275, 2010.

    Article  Google Scholar 

  6. Brass, L. F., and S. L. Diamond. Transport physics and biorheology in the setting of hemostasis and thrombosis. J. Thromb. Haemost. 14:906–917, 2016.

    Article  Google Scholar 

  7. Chebbi, R. Dynamics of blood flow: modeling of the Fåhræus-Lindqvist effect. J. Biol. Phys. 41:313–326, 2015.

    Article  Google Scholar 

  8. Ciciliano, J. C., Y. Sakurai, D. R. Myers, M. E. Fay, B. Hechler, S. Meeks, R. Li, J. B. Dixon, L. A. Lyon, C. Gachet, and W. A. Lam. Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach. Blood 126:817–824, 2015.

    Article  Google Scholar 

  9. Cummins, B. M., F. S. Ligler, and G. M. Walker. Point-of-care diagnostics for niche applications. Biotechnol. Adv. 34:161–176, 2016.

    Article  Google Scholar 

  10. Dorf, R. C., and J. A. Svoboda. Introduction to Electric Circuits (5th ed.). New York: Wiley, 2001.

    MATH  Google Scholar 

  11. Engelmann, B., and S. Massberg. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13:34–45, 2013.

    Article  Google Scholar 

  12. Fahraeus, R. The suspension stability of the blood. Physiol. Rev. 9:241–274, 1929.

    Article  Google Scholar 

  13. FDA Class I recall. Alere Recalls INRatio and INRatio2 PT/INR Monitoring System Due to Incorrect Test Results. U.S. Food and Drug Administration, 2016. https://www.fda.gov/MedicalDevices/Safety/ListofRecalls/ucm518070.htm.

  14. Fedosov, D. A., B. Caswell, A. S. Popel, and G. E. Karniadakis. Blood flow and cell-free layer in microvessels. Microcirculation 17:615–628, 2010.

    Article  Google Scholar 

  15. Fernandes, H. P., C. L. Cesar, and M. D. L. Barjas-Castro. Electrical properties of the red blood cell membrane and immunohematological investigation. Rev. Bras. Hematol. E Hemoter. 33:297–301, 2011.

    Article  Google Scholar 

  16. Fricke, H. The electric capacity of suspensions with special reference to blood. J. Gen. Physiol. 9:137–152, 1925.

    Article  Google Scholar 

  17. Gaw, R. L., B. H. Cornish, and B. J. Thomas. The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation. IEEE Trans. Biomed. Eng. 55:721–727, 2008.

    Article  Google Scholar 

  18. Gidaspow, D., and J. Huang. Kinetic theory based model for blood flow and its viscosity. Ann. Biomed. Eng. 37:1534–1545, 2009.

    Article  Google Scholar 

  19. Hatschek, E. The viscosity of liquids. London: G. Bell and Sons Ltd., 1928.

    MATH  Google Scholar 

  20. Hoetink, A. E., T. J. C. Faes, K. R. Visser, and R. M. Heethaar. On the flow dependency of the electrical conductivity of blood. IEEE Trans. Biomed. Eng. 51:1251–1261, 2004.

    Article  Google Scholar 

  21. Horowitz, P., and W. Hill. The art of electronics (2nd ed.). Cambridge: Cambridge University Press, 1989.

    Google Scholar 

  22. Hum, J., J. J. Shatzel, J. H. Jou, and T. G. Deloughery. The efficacy and safety of direct oral anticoagulants vs. traditional anticoagulants in cirrhosis. Eur. J. Haematol. 98:393–397, 2017.

    Article  Google Scholar 

  23. Khorana, A. A., M. Carrier, D. A. Garcia, and A. Y. Y. Lee. Guidance for the prevention and treatment of cancer-associated venous thromboembolism. J. Thromb. Thrombolysis 41:81–91, 2016.

    Article  Google Scholar 

  24. Kujovich, J. L. Coagulopathy in liver disease: a balancing act. Hematol. Am. Soc. Hematol. Educ. Progr 243–249:2015, 2015.

    Google Scholar 

  25. Kyriazi, V., and E. Theodoulou. Assessing the risk and prognosis of thrombotic complications in cancer patients. Arch. Pathol. Lab. Med. 137:1286–1295, 2013.

    Article  Google Scholar 

  26. Lei, K. F., K.-H. Chen, P.-H. Tsui, and N.-M. Tsang. Real-time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip. PloS ONE 8:e76243, 2013.

    Article  Google Scholar 

  27. Mackman, N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler. Thromb. Vasc. Biol. 24:1015–1022, 2004.

    Article  Google Scholar 

  28. Mackman, N. The many faces of tissue factor. J. Thromb. Haemost. 7(Suppl 1):136–139, 2009.

    Article  Google Scholar 

  29. Mackman, N. New insights into the mechanisms of venous thrombosis. J. Clin. Invest. 122:2331–2336, 2012.

    Article  Google Scholar 

  30. Maha, A. A. Effect of glucose-6-phosphate dehydrogenase deficiency on some biophysical properties of human erythrocytes. Hematology 14:38–45, 2009.

    Article  Google Scholar 

  31. Mangaonkar, A. A., K. P. Hoversten, and N. Gangat. Prognostic risk model for patients with high-risk polycythemia vera and essential thrombocythemia. Expert Rev. Hematol. 11:1–6, 2018.

    Article  Google Scholar 

  32. McClendon, J. Colloidal properties of the surface of the living cell. II. Electrical conductivity and capacity of blood to alternating currents of long duration and varying in frequency from 260 to 2,000,000 cycles per second. J. Biol. Chem. 69:733–754, 1926.

    Google Scholar 

  33. Merrill, E. W. Rheology of blood. Physiol. Rev. 40:863–884, 1969.

    Article  Google Scholar 

  34. Mistral, T., Y. Boué, J.-L. Bosson, P. Manhes, J. Greze, J. Brun, P. Albaladejo, J.-F. Payen, and P. Bouzat. Performance of point-of-care international normalized ratio measurement to diagnose trauma-induced coagulopathy. Scand. J. Trauma Resusc. Emerg. Med. 25:59, 2017.

    Article  Google Scholar 

  35. Moreno, M., A. Schwartz, and R. Dvorkin. The Accuracy of point-of-care creatinine testing in the emergency department. Adv. Emerg. Med. 1–5:2015, 2015.

    Google Scholar 

  36. Morrissey, J. H., and S. A. Smith. Polyphosphate as modulator of hemostasis, thrombosis, and inflammation. J. Thromb. Haemost. 13:S92–S97, 2015.

    Article  Google Scholar 

  37. Nagasawa, Y., Z. Kato, and S. Tanaka. Particle sedimentation monitoring in high-concentration slurries. AIP Adv. 6:115206, 2016.

    Article  Google Scholar 

  38. Ogawa, S., F. Szlam, D. Bolliger, T. Nishimura, E. P. Chen, and K. A. Tanaka. The impact of hematocrit on fibrin clot formation assessed by rotational thromboelastometry. Anesth. Analg. 115:16–21, 2012.

    Article  Google Scholar 

  39. Ortel, T. L. Antiphospholipid syndrome: laboratory testing and diagnostic strategies. Am. J. Hematol. 87(Suppl 1):S75–S81, 2012.

    Article  Google Scholar 

  40. Parsegian, A. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221:844–846, 1969.

    Article  Google Scholar 

  41. Pirofsky, B. The determination of blood viscosity in man by a method based on Poiseuille’s law. J. Clin. Invest. 32:292–298, 1953.

    Article  Google Scholar 

  42. Pries, A. R., D. Neuhaus, and P. Gaehtgens. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263:H1770–H1778, 1992.

    Google Scholar 

  43. Samuelson, B. T., and A. Cuker. Measurement and reversal of the direct oral anticoagulants. Blood Rev. 31:77–84, 2017.

    Article  Google Scholar 

  44. Stalker, T. J., J. D. Welsh, M. Tomaiuolo, J. Wu, T. V. Colace, S. L. Diamond, and L. F. Brass. A systems approach to hemostasis: 3. Thrombus consolidation regulates intrathrombus solute transport and local thrombin activity. Blood 124:1824–1831, 2014.

    Article  Google Scholar 

  45. Steinfelder-Visscher, J., S. Teerenstra, J. M. T. K. Gunnewiek, and P. W. Weerwind. Evaluation of the i-STAT point-of-care analyzer in critically ill adult patients. J. Extra. Corpor. Technol. 40:57–60, 2008.

    Google Scholar 

  46. Thiruvenkatarajan, V., A. Pruett, and S. D. Adhikary. Coagulation testing in the perioperative period. Indian J. Anaesth. 58:565–572, 2014.

    Article  Google Scholar 

  47. Thurston, G. B. Rheological parameters for the viscosity viscoelasticity and thixotropy of blood. Biorheology 16:149–162, 1979.

    Article  Google Scholar 

  48. Thurston, G. B. Plasma release-cell layering theory for blood flow. Biorheology 26:199–214, 1989.

    Article  Google Scholar 

  49. Thurston, G. B., and N. M. Henderson. Effects of flow geometry on blood viscoelasticity. Biorheology 43:729–746, 2006.

    Google Scholar 

  50. Tomaiuolo, M., T. J. Stalker, J. D. Welsh, S. L. Diamond, T. Sinno, and L. F. Brass. A systems approach to hemostasis: 2. Computational analysis of molecular transport in the thrombus microenvironment. Blood 124:1816–1823, 2014.

    Article  Google Scholar 

  51. Trevan, J. W. The viscosity of blood. Biochem. J. 12:60–71, 1918.

    Article  Google Scholar 

  52. Walton, B. L., M. Lehmann, T. Skorczewski, L. A. Holle, J. D. Beckman, J. A. Cribb, M. J. Mooberry, A. R. Wufsus, B. C. Cooley, J. W. Homeister, R. Pawlinski, M. R. Falvo, N. S. Key, A. L. Fogelson, K. B. Neeves, and A. S. Wolberg. Elevated hematocrit enhances platelet accumulation following vascular injury. Blood 129:2537–2546, 2017.

    Article  Google Scholar 

  53. Welsh, J. D., T. J. Stalker, R. Voronov, R. W. Muthard, M. Tomaiuolo, S. L. Diamond, and L. F. Brass. A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood 124:1808–1815, 2014.

    Article  Google Scholar 

  54. Westenbrink, B. D., M. Alings, C. B. Granger, J. H. Alexander, R. D. Lopes, E. M. Hylek, L. Thomas, D. M. Wojdyla, M. Hanna, M. Keltai, P. G. Steg, R. De Caterina, L. Wallentin, and W. H. van Gilst. Anemia is associated with bleeding and mortality, but not stroke, in patients with atrial fibrillation: insights from the apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (ARISTOTLE) trial. Am. Heart J. 185:140–149, 2017.

    Article  Google Scholar 

  55. Westerhof, N., N. Stergiopulos, and M.I.M. Noble. Law of Poiseuille. In: Snapshots of Hemodynamics Boston: Springer, 2010, pp. 9–14.

  56. Zhao, T. X., B. Jacobson, and T. Ribbe. Triple-frequency method for measuring blood impedance. Physiol. Meas. 14:145–156, 1993.

    Article  Google Scholar 

  57. Zilberman-Rudenko, J., A. Itakura, C. P. Wiesenekker, R. Vetter, C. Maas, D. Gailani, E. I. Tucker, A. Gruber, C. Gerdes, and O. J. T. McCarty. Coagulation factor XI promotes distal platelet activation and single platelet consumption in the bloodstream under shear flow. Arterioscler. Thromb. Vasc. Biol. 36:510–517, 2016.

    Article  Google Scholar 

  58. Zilberman-Rudenko, J., J. L. Sylman, H. H. S. Lakshmanan, O. J. T. McCarty, and J. Maddala. Dynamics of blood flow and thrombus formation in a multi-bypass microfluidic ladder network. Cell. Mol. Bioeng. 10:1–14, 2016.

    Google Scholar 

Download references

Acknowledgments

We thank Katrina Sloma, Ken Vandehey, Manish Giri and Chantelle Domingue from the Division of Research and Development, Microfluidic Technology, HP Inc. for manufacturing and supplying chips and providing electrical signal-processing software and technical support. This work was supported by grants from the National Institutes of Health (R01HL101972, R01GM116184 and F31HL13623001) and an unrestricted research contract from HP Inc. O.J.T. McCarty is an American Heart Association Established Investigator (13EIA12630000).

Conflict of interest

HP Inc. has pending patents for microfluidic device and chip technology concept and software described. R.M. White was employed by HP, Inc. during this study. J. Zilberman-Rudenko, D.A. Zilberman, H.H.S. Lakshmanan, R.A. Rigg, J.J. Shatzel, J. Maddala and O.J.T. McCarty have no conflicts of interests. Potential conflicts of interest have been reviewed and managed by the Oregon Health and Science University Conflict of Interest in Research Committee.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was received from all human blood donors. This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jevgenia Zilberman-Rudenko.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zilberman-Rudenko, J., White, R.M., Zilberman, D.A. et al. Design and Utility of a Point-of-Care Microfluidic Platform to Assess Hematocrit and Blood Coagulation. Cel. Mol. Bioeng. 11, 519–529 (2018). https://doi.org/10.1007/s12195-018-0541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-018-0541-z

Keywords

Navigation