Skip to main content
Log in

Effect of heat processing on the chemical constituents and NO-suppressing activity of Bletilla Tuber

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Bletilla Tuber (dried tuber of Bletilla striata) is used as an astringent hemostatic medicine for the treatment of ulcers, bleeding, and burns in traditional Chinese medicine (TCM). The Chinese Pharmacopoeia describes the heat processing methods used on raw tubers of Bletilla striata to produce the herbal medicine "Bletilla Tuber". In this study, we compared the chemical constituents of well-processed Bletilla Tuber (BT1) and normally processed Bletilla Tuber (BT2) derived from the same origin. In addition, as an indicator of the hemostatic activity of Bletilla Tuber, the NO inhibitory activities of extracts obtained from BT1 and BT2 and the isolated compounds were examined. As a result of LC–MS analysis, three types of compounds, glucosyloxybenzyl 2-isobutylmalates, bibenzyl derivatives and phenanthrene derivatives, were detected. Comparison of the chemical profiles of the extracts indicated that the relative contents of glucosyloxybenzyl 2-isobutylmalates had changed by heat processing, whereas the relative contents of bibenzyls and phenanthrenes had not changed. The extracts of BT1 and BT2 showed similar IC50 values on NO production suppressing activity. Furthermore, phenanthrenes and bibenzyls were identified as the compounds responsible for suppressing the NO activity. These results suggest that the biological activities, such as the anti-inflammatory and hemostatic activities, of Bletilla Tuber are not affected by heat processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yeung HC (1985) Handbook of chinese herbal formulas, 2nd edn. Institute of Chinese Medicine, Hongkong, p 206

    Google Scholar 

  2. Hossain MM (2011) Therapeutic orchids: traditional uses and recent advances—an overview. Fitoterapia 82:102–140

    Article  Google Scholar 

  3. He X, Wang X, Fang J, Zhao Z, Huang L, Guo H, Zheng X (2017) Bletilla striata: medicinal uses, phytochemistry and pharmacological activities. J Ethnopharmacol 195:20–38

    Article  CAS  Google Scholar 

  4. Luo Y, Diao H, Xia S, Dong L, Chen J, Zhang J (2010) A physiologically active polysaccharide hydrogel promotes wound healing. J Biomed Mater Res Part A 94:193–204

    Article  Google Scholar 

  5. Ke CY, Zhao CJ (2011) Effects of Bletilla striata polysaccharides on ulcerative colitis. China Pharm 22:2132–2134

    Google Scholar 

  6. Wang W, Meng H (2015) Cytotoxic, anti-inflammatory and hemostatic spirostane-steroidal saponins from the ethanol extract of the roots of Bletilla striata. Fitoterapia 101:12–18

    Article  CAS  Google Scholar 

  7. Peng Q, Li M, Xue F, Liu H (2014) Structure and immunobiological activity of a new polysaccharide from Bletilla striata. Carbohydr Polym 107:119–123

    Article  CAS  Google Scholar 

  8. Zhang YW, Jiang FS, Wang Y, Ding ZS (2012) Present status and sustainable development of Rhizoma Bletillae industry. Chin Arch Tradit Chin Med 30:2264–2267

    Google Scholar 

  9. Yue L, Wang W, Wang Y, Du T, Shen W, Tang H, Wang Y, Yin H (2016) Bletilla Striata polysaccharide inhibits angiotensin II-induced ROS and inflammation via NOX4 and TLR2 pathways. Int J Biol Macromol 89:376–388

    Article  CAS  Google Scholar 

  10. Yoon JH, Park SG, Lee MJ, Park JY, Seo KS, Woo KC, Lee CE (2013) Antioxidant and anti-inflammatory effects of Bletilla striata reichenbach fil. fractions as cosmetic. J Life Sci 23:1073–1078

    Article  Google Scholar 

  11. Hong CH, Hur SK, Oh OJ, Kim SS, Nam KA, Lee SK (2002) Evaluation of natural products on inhibition of inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) in cultured mouse macrophage cells. J Ethnopharmacol 83:153–159

    Article  Google Scholar 

  12. Zhao Y, Niu JJ, Cheng XC, Lu YX, Jun XF, Zhao XR, Zhang QL, Wu CT (2018) Chemical constituents from Bletilla striata and their NO production suppression in RAW 264.7 macrophage cells. J Asian Nat Prod Res 20:385–390

    Article  CAS  Google Scholar 

  13. Simon DI, Stamler JS, Loh E, Loscalzo J, Francis SA, Creager MA (1995) Effect of nitric oxide synthase inhibition on bleeding time in humans. J Cardiovasc Pharmacol 26:339–342

    Article  CAS  Google Scholar 

  14. Remuzzi G, Perico N, Zoja C, Corna D, Macconi D, Vigano G (1990) Role of endothelium-derived nitric oxide in the bleeding tendency of uremia. J Clin Invest 86:1768–1771

    Article  CAS  Google Scholar 

  15. Nishidono Y, Fujita T, Kawanami A, Nishizawa M, Tanaka K (2017) Identification of PGC-1α activating constituents in Zingiberaceous crude drugs. Fitoterapia 122:40–44

    Article  CAS  Google Scholar 

  16. Majumder P, Laha S, Datta N (1982) Coelonin, a 9,10-dihydrophenanthrene from the Orchids Coelogyne ochracea and Coelogyne elata. Phytochemistry 21:478–480

    Article  CAS  Google Scholar 

  17. Wang Y, Huang W, Zhang J, Yang M, Qi Q, Wang K, Li A, Zhao Z (2016) The therapeutic effect of Bletilla striata extracts on LPS-induced acute lung injury by regulation of inflammation and oxidation. RSC Adv 6:89338–89346

    Article  CAS  Google Scholar 

  18. Leong YW, Kang CC, Harrison LJ, Powell AD (1997) Phenanthrenes, dihydrophenanthrenes and bibenzyls from the orchid Bulbophyllum vaginatum. Phytochemistry 44:157–165

    Article  CAS  Google Scholar 

  19. Takagi S, Yamaki M, Inoue K (1983) Antimicrobial agents from Bletilla striata. Phytochemistry 22:1011–1015

    Article  CAS  Google Scholar 

  20. Bai L, Kato T, Inoue K, Yamaki M, Takagi S (1993) Stilbenoids from Bletilla striata. Phytochemistry 33:1481–1483

    Article  CAS  Google Scholar 

  21. Morikawa T, Xie H, Matsuda H, Yoshikawa M (2006) Glucosyloxybenzyl 2-isobutylmalates from the tubers of Gymnadenia conopsea. J Nat Prod 69:881–886

    Article  CAS  Google Scholar 

  22. Sakuno E, Kamo T, Takemura T, Sugie H, Hiradate S, Fujii Y (2010) Contribution of militarine and dactylorhin A to the plant growth-inhibitory activity of a weed-suppressing orchid, Bletilla striata. Weed Biol Manage 10:202–207

    Article  CAS  Google Scholar 

  23. Kanemaki T, Kitade H, Hiramatsu Y, Kamiyama Y, Okumura T (1993) Stimulation of glycogen degradation by prostaglandin E2 in primary cultured rat hepatocytes. Prostaglandins 45:459–474

    Article  CAS  Google Scholar 

  24. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  Google Scholar 

  25. Li Z, Guo X, Cao Z, Liu X, Liao X, Huang C, Xu W, Liu L, Yang P (2018) New MS network analysis pattern for the rapid identification of constituents from traditional Chinese medicine prescription Lishukang capsules in vitro and in vivo based on UHPLC/Q-TOF-MS. Talanta 189:606–621

    Article  CAS  Google Scholar 

  26. Niederberger E, Tegeder I, Schäfer C, Seegel M, Grösch S, Geisslinger G (2003) Opposite effects of rofecoxib on nuclear factor-kappaB and activating protein-1 activation. J Pharmacol Exp Ther 304:1153–1160

    Article  CAS  Google Scholar 

  27. Martin-Sanz P, Callejas NA, Casado M, Díaz-Guerra MJ, Boscá L (1998) Expression of cyclooxygenase-2 in foetal rat hepatocytes stimulated with lipopolysaccharide and pro-inflammatory cytokines. Br J Pharmacol 125:1313–1319

    Article  CAS  Google Scholar 

  28. Milano S, Arcoleo F, Dieli M, D'Agostino R, D'Agostino P, De Nucci G, Cillari E (1995) Prostaglandin E2 regulates inducible nitric oxide synthase in the murine macrophage cell line J774. Prostaglandins 49:105–115

    Article  CAS  Google Scholar 

  29. Zhang M, Shao Q, Xu E, Wang Z, Wang Z, Wang Z, Yin L (2019) Bletilla striata: a review of seedling propagation and cultivation modes. Physiol Mol Biol Plants 25:601–609

    Article  CAS  Google Scholar 

  30. Zhao YX, Deng YR, Zhang XJ, Chen F (2013) Advances in chemical constituents and pharmacology of genus Bletilla. Nat Prod Res Dev 25:1137–1145

    CAS  Google Scholar 

  31. Cai B, Qin K, Wu H, Cai H, Lu T, Zhang X (2012) Chemical mechanism during Chinese medicine processing. Prog Chem 24:637–649

    CAS  Google Scholar 

  32. Li JY, Kuang MT, Yang L, Kong QH, Hou B, Liu ZH, Chi XQ, Yuan MY, Hu JM, Zhou J (2018) Stilbenes with anti-inflammatory and cytotoxic activity from the rhizomes of Bletilla ochracea Schltr. Fitoterapia 127:74–80

    Article  CAS  Google Scholar 

  33. Hwang JS, Lee SA, Hong SS, Han XH, Lee C, Kang SJ, Lee D, Kim Y, Hong JT, Lee MK, Hwang BY (2010) Phenanthrenes from Dendrobium nobile and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells. Bioorg Med Chem Lett 20:3785–3787

    Article  CAS  Google Scholar 

  34. Diao H, Li X, Chen J, Luo Y, Chen X, Dong L, Wang C, Zhang C, Zhang J (2008) Bletilla striata polysaccharide stimulates inducible nitric oxide synthase and proinflammatory cytokine expression in macrophages. J Biosci Bioeng 105:85–89

    Article  CAS  Google Scholar 

  35. Inaba H, Yoshigai E, Okuyama T, Murakoshi M, Sugiyama K, Nishino H, Nishizawa M (2015) Antipyretic analgesic drugs have different mechanisms for regulation of the expression of inducible nitric oxide synthase in hepatocytes and macrophages. Nitric Oxide 44:61–70

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Asia-Japan Research Institute of Ritsumeikan Asia-Japan Research Organization, Ritsumeikan University (19AJ0003). Y.N. was supported by Nagai Memorial Research Scholarship from the Pharmaceutical Society of Japan (N-194301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishidono, Y., Ishii, T., Okada, R. et al. Effect of heat processing on the chemical constituents and NO-suppressing activity of Bletilla Tuber. J Nat Med 74, 219–228 (2020). https://doi.org/10.1007/s11418-019-01371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-019-01371-y

Keywords

Navigation