Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 30, 2019

Intracellular distribution of pseudorabies virus UL2 and detection of its nuclear import mechanism

  • Meili Li , Zuo Xu , Xingmei Zou , Yuanfang Wang , Yiwen Li , Xiaowen Ou , Yangxi Deng , Yingjie Guo , Weidong Gan , Daixiong Chen , Tao Peng , Jing Xiao and Mingsheng Cai EMAIL logo
From the journal Biological Chemistry

Abstract

Pseudorabies virus (PRV) UL2 (pUL2) is a multifunctional protein, which is homologous with herpes simplex virus 1 early protein UL2 (hUL2) and crucial for the viral propagation. Yet, how pUL2 executes its roles in the viral life cycle remain inadequately understood. In order to uncover its effect on the procedure of PRV infection, investigation was performed to examine the subcellular distribution of pUL2 and establish its trafficking mechanism. In the present study, enhanced yellow fluorescent protein or Myc tag fused pUL2 was transiently overexpressed in transfected cells and exhibited an absolutely nuclear accumulation without the existence of other PRV proteins. Additionally, the nuclear trafficking of pUL2 was proved to rely on Ran-, transportin-1, importin β1, importin α1, α3 and α5. Accordingly, these data will benefit the knowledge of pUL2-mediated biological effects in PRV infection cycle.

Award Identifier / Grant number: 81772179

Award Identifier / Grant number: 2018A0303130257

Award Identifier / Grant number: 2015A030313473

Award Identifier / Grant number: 2019A1515010395

Award Identifier / Grant number: 2018KTSCX184

Funding statement: This work was supported by grants from the National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/501100001809, 81772179); the Natural Science Foundation of Guangdong Province (2018A0303130257, 2015A030313473 and 2019A1515010395); the Regular University Distinguished Innovation Project from Education Department of Guangdong Province, China (2018KTSCX184); the Medical Scientific Research Foundation of Guangdong Province, China (A2017055); High-Level Universities Academic Backbone Development Program of Guangzhou Medical University; and the Undergraduate Laboratory Opening Project of Guangzhou Medical University (2018 and 2019).

  1. Competing interests: The authors declare that they have no competing interests.

References

Bogani, F., Chua, C.N., and Boehmer, P.E. (2009). Reconstitution of uracil DNA glycosylase-initiated base excision repair in herpes simplex virus-1. J. Biol. Chem. 284, 16784–16790.10.1074/jbc.M109.010413Search in Google Scholar PubMed PubMed Central

Bogani, F., Corredeira, I., Fernandez, V., Sattler, U., Rutvisuttinunt, W., Defais, M., and Boehmer, P.E. (2010). Association between the herpes simplex virus-1 DNA polymerase and uracil DNA glycosylase. J. Biol. Chem. 285, 27664–27672.10.1074/jbc.M110.131235Search in Google Scholar PubMed PubMed Central

Cai, M., Li, M., Wang, K., Wang, S., Lu, Q., Yan, J., Mossman, K.L., Lin, R., and Zheng, C. (2013a). The herpes simplex virus 1-encoded envelope glycoprotein B activates NF-kappaB through the Toll-like receptor 2 and MyD88/TRAF6-dependent signaling pathway. PLoS One 8, e54586.10.1371/journal.pone.0054586Search in Google Scholar PubMed PubMed Central

Cai, M.S., Wang, B.Y., Cui, W., Zhao, Z.Y., Chen, J.H., Wen, X.M., Li, Z., and Li, M.L. (2013b). Molecular characterization of the pseudorabies virus UL2 gene. Genet. Mol. Res. 12, 4147–4161.10.4238/2013.October.7.1Search in Google Scholar PubMed

Cai, M., Si, J., Li, X., Zeng, Z., and Li, M. (2016a). Characterization of the nuclear import mechanisms of HSV-1 UL31. Biol. Chem. 397, 555–561.10.1515/hsz-2015-0299Search in Google Scholar PubMed

Cai, M.S., Jiang, S., Zeng, Z.C., Li, X.W., Mo, C.C., Yang, Y.J., Chen, C.K., Xie, P.P., Bian, Y., Wang, J.L., et al. (2016b). Probing the nuclear import signal and nuclear transport molecular determinants of PRV ICP22. Cell Biosci. 6, 3.10.1186/s13578-016-0069-7Search in Google Scholar PubMed PubMed Central

Cai, M., Huang, Z., Liao, Z., Chen, T., Wang, P., Jiang, S., Chen, D., Peng, T., Bian, Y., Hong, G., et al. (2017a). Characterization of the subcellular localization and nuclear import molecular mechanisms of herpes simplex virus 1 UL2. Biol. Chem. 398, 509–517.10.1515/hsz-2016-0268Search in Google Scholar PubMed

Cai, M., Liao, Z., Chen, T., Wang, P., Zou, X., Wang, Y., Xu, Z., Jiang, S., Huang, J., Chen, D., et al. (2017b). Characterization of the subcellular localization of Epstein-Barr virus encoded proteins in live cells. Oncotarget 8, 70006–70034.10.18632/oncotarget.19549Search in Google Scholar PubMed PubMed Central

Cai, M., Wang, P., Wang, Y., Chen, T., Xu, Z., Zou, X., Ou, X., Li, Y., Chen, D., Peng, T., et al. (2019). Identification of the molecular determinants for nuclear import of PRV EP0. Biol. Chem. 400, 1385–1394.10.1515/hsz-2019-0201Search in Google Scholar PubMed

Cansizoglu, A.E., Lee, B.J., Zhang, Z.C., Fontoura, B.M., and Chook, Y.M. (2007). Structure-based design of a pathway-specific nuclear import inhibitor. Nat. Struct. Mol. Biol. 14, 452–454.10.1038/nsmb1229Search in Google Scholar PubMed PubMed Central

Chen, T., Zou, X., Xu, Z., Wang, Y., Wang, P., Peng, H., Liu, D., Lin, J., Luo, R., Chen, Q., et al. (2018). Molecular characterization of the Epstein-Barr virus BGLF2 gene, its expression, and subcellular localization. Iran. J. Biotechnol. 16, e1610.10.21859/ijb.1610Search in Google Scholar PubMed PubMed Central

Chen, T., Wang, Y., Xu, Z., Zou, X., Wang, P., Ou, X., Li, Y., Peng, T., Chen, D., Li, M., et al. (2019). Epstein-Barr virus tegument protein BGLF2 inhibits NF-κB activity by preventing p65 Ser536 phosphorylation. FASEB J. 33, 10563–10576.10.1096/fj.201901196RRSearch in Google Scholar PubMed

Fagerlund, R., Melen, K., Cao, X., and Julkunen, I. (2008). NF-κB p52, RelB and c-Rel are transported into the nucleus via a subset of importin alpha molecules. Cell Signal. 20, 1442–1451.10.1016/j.cellsig.2008.03.012Search in Google Scholar PubMed

Goldfarb, D.S., Corbett, A.H., Mason, D.A., Harreman, M.T., and Adam, S.A. (2004). Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol. 14, 505–514.10.1016/j.tcb.2004.07.016Search in Google Scholar PubMed

Gorlich, D. and Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660.10.1146/annurev.cellbio.15.1.607Search in Google Scholar PubMed

Guo, H., Mao, R., Block, T.M., and Guo, J.T. (2010). Production and function of the cytoplasmic deproteinized relaxed circular DNA of hepadnaviruses. J. Virol. 84, 387–396.10.1128/JVI.01921-09Search in Google Scholar PubMed PubMed Central

Harel, A. and Forbes, D.J. (2004). Importin beta: conducting a much larger cellular symphony. Mol. Cell. 16, 319–330.10.1016/S1097-2765(04)00647-1Search in Google Scholar

Kino, Y., Washizu, C., Aquilanti, E., Okuno, M., Kurosawa, M., Yamada, M., Doi, H., and Nukina, N. (2010). Intracellular localization and splicing regulation of FUS/TLS are variably affected by amyotrophic lateral sclerosis-linked mutations. Nucleic. Acids Res. 39, 2781–2798.10.1093/nar/gkq1162Search in Google Scholar PubMed PubMed Central

Kobe, B. (1999). Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nat. Struct. Biol. 6, 388–397.10.1038/7625Search in Google Scholar PubMed

Kosugi, S., Hasebe, M., Entani, T., Takayama, S., Tomita, M., and Yanagawa, H. (2008). Design of peptide inhibitors for the importin α/β nuclear import pathway by activity-based profiling. Chem. Biol. 15, 940–949.10.1016/j.chembiol.2008.07.019Search in Google Scholar PubMed

Li, M.L., Wang, S., Cai, M.S., Guo, H., and Zheng, C.F. (2011a). Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology 417, 385–393.10.1016/j.virol.2011.06.004Search in Google Scholar PubMed

Li, M.L., Wang, S., Cai, M.S., and Zheng, C.F. (2011b). Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J. Virol. 85, 10239–10251.10.1128/JVI.05223-11Search in Google Scholar PubMed PubMed Central

Li, M.L., Cui, W., Mo, C.C., Wang, J.L., Zhao, Z.Y., and Cai, M.S. (2014). Cloning, expression, purification, antiserum preparation and its characteristics of the truncated UL6 protein of herpes simplex virus 1. Mol. Biol. Rep. 41, 5997–6002.10.1007/s11033-014-3477-ySearch in Google Scholar PubMed

Li, M.L., Jiang, S., Mo, C.C., Zeng, Z.C., Li, X.W., Chen, C.K., Yang, Y.J., Wang, J.L., Huang, J.L., Chen, D.X., et al. (2015a). Identification of molecular determinants for the nuclear import of pseudorabies virus UL31. Arch. Biochem. Biophys. 587, 12–17.10.1016/j.abb.2015.09.024Search in Google Scholar PubMed

Li, M.L., Jiang, S., Wang, J.L., Mo, C.C., Zeng, Z.C., Yang, Y.J., Chen, C.K., Li, X.W., Cui, W., Huang, J.L., et al. (2015b). Characterization of the nuclear import and export signals of pseudorabies virus UL31. Arch. Virol. 160, 2591–2594.10.1007/s00705-015-2527-7Search in Google Scholar PubMed

Li, M., Chen, T., Zou, X., Xu, Z., Wang, Y., Wang, P., Ou, X., Li, Y., Chen, D., Peng, T., et al. (2018). Characterization of the nucleocytoplasmic transport mechanisms of Epstein-Barr virus BFLF2. Cell Physiol. Biochem. 51, 1500–1517.10.1159/000495641Search in Google Scholar PubMed

Lu, C.C., Huang, H.T., Wang, J.T., Slupphaug, G., Li, T.K., Wu, M.C., Chen, Y.C., Lee, C.P., and Chen, M.R. (2007). Characterization of the uracil-DNA glycosylase activity of Epstein-Barr virus BKRF3 and its role in lytic viral DNA replication. J. Virol. 81, 1195–1208.10.1128/JVI.01518-06Search in Google Scholar PubMed PubMed Central

Mizuguchi, C., Moriyama, T., and Yoneda, Y. (2011). Generation and characterization of a monoclonal antibody against importin α7/NPI-2. Hybridoma 30, 307–309.10.1089/hyb.2011.0006Search in Google Scholar PubMed

Moore, M.S. and Blobel, G. (1993). The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365, 661–663.10.1038/365661a0Search in Google Scholar PubMed

Mullaney, J., Moss, H.W., and McGeoch, D.J. (1989). Gene UL2 of herpes simplex virus type 1 encodes a uracil-DNA glycosylase. J. Gen. Virol. 70, 449–454.10.1099/0022-1317-70-2-449Search in Google Scholar PubMed

Palacios, I., Weis, K., Klebe, C., Mattaj, I.W., and Dingwall, C. (1996). RAN/TC4 mutants identify a common requirement for snRNP and protein import into the nucleus. J. Cell Biol. 133, 485–494.10.1083/jcb.133.3.485Search in Google Scholar PubMed PubMed Central

Pomeranz, L.E., Reynolds, A.E., and Hengartner, C.J. (2005). Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol. Mol. Biol. Rev. 69, 462–500.10.1128/MMBR.69.3.462-500.2005Search in Google Scholar PubMed PubMed Central

Prichard, M.N., Lawlor, H., Duke, G.M., Mo, C., Wang, Z., Dixon, M., Kemble, G., and Kern, E.R. (2005). Human cytomegalovirus uracil DNA glycosylase associates with ppUL44 and accelerates the accumulation of viral DNA. Virol. J. 2, 55.10.1186/1743-422X-2-55Search in Google Scholar PubMed PubMed Central

Pyles, R.B., and Thompson, R.L. (1994). Evidence that the herpes simplex virus type 1 uracil DNA glycosylase is required for efficient viral replication and latency in the murine nervous system. J. Virol. 68, 4963–4972.10.1128/jvi.68.8.4963-4972.1994Search in Google Scholar PubMed PubMed Central

Reid, S.P., Valmas, C., Martinez, O., Sanchez, F.M., and Basler, C.F. (2007). Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J. Virol. 81, 13469–13477.10.1128/JVI.01097-07Search in Google Scholar PubMed PubMed Central

Smith, G.A. and Enquist, L.W. (2000). A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc. Natl. Acad. Sci. U.S.A. 97, 4873–4878.10.1073/pnas.080502497Search in Google Scholar PubMed PubMed Central

Sorokin, A.V., Kim, E.R., and Ovchinnikov, L.P. (2007). Nucleocytoplasmic transport of proteins. Biochemistry (Mosc.) 72, 1439–1457.10.1134/S0006297907130032Search in Google Scholar

Strang, B.L. and Coen, D.M. (2010). Interaction of the human cytomegalovirus uracil DNA glycosylase UL114 with the viral DNA polymerase catalytic subunit UL54. J. Gen. Virol. 91, 2029–2033.10.1099/vir.0.022160-0Search in Google Scholar PubMed PubMed Central

Ushijima, R., Sakaguchi, N., Kano, A., Maruyama, A., Miyamoto, Y., Sekimoto, T., Yoneda, Y., Ogino, K., and Tachibana, T. (2005). Extracellular signal-dependent nuclear import of STAT3 is mediated by various importin alphas. Biochem. Biophys. Res. Commun. 330, 880–886.10.1016/j.bbrc.2005.03.063Search in Google Scholar PubMed

Ward, T.M., Williams, M.V., Traina-Dorge, V., and Gray, W.L. (2009). The simian varicella virus uracil DNA glycosylase and dUTPase genes are expressed in vivo, but are non-essential for replication in cell culture. Virus Res. 142, 78–84.10.1016/j.virusres.2009.01.013Search in Google Scholar PubMed PubMed Central

Zou, X., Xu, Z., Wang, Y., Ou, X., Li, Y., Liu, D., Gan, W., Lu, M., Chen, Q., Peng, H., et al. (2019). Expression, purification, and antiserum production of the truncated UL31 protein of herpes simplex virus 1. Iran J. Biotechnol. 17, e1609.10.21859/ijb.1609Search in Google Scholar PubMed PubMed Central

Received: 2019-07-09
Accepted: 2019-10-10
Published Online: 2019-10-30
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2019-0311/html
Scroll to top button