Skip to main content

Advertisement

Log in

Hybrid elastomer–plastic microfluidic device as a convenient model for mimicking the blood–brain barrier in vitro

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this study, we fabricated a hybrid elastomer–plastic microdevice using the silicone elastomer poly(dimethylsiloxane) (PDMS) and the plastic polycarbonate (PC), to mimic the human blood–brain barrier (BBB) in vitro. Specifically, the microchannel-imprinted elastomer was first coated with 3-aminopropyltriethoxysilane to produce amine-terminated PDMS. Then, simply by conformal contact at room temperature, the amine-functionalized PDMS was bonded to pristine PC through the formation of urethane linkages. Aside from realizing device bonding, the amine functionalization also assisted in subsequent dopamine coating to form polydopamine and provide a stable surface for culturing human endothelial cells and central nervous system-related cells (e.g., astrocytes) inside the microchannels. Successful mimicking of the BBB-like microenvironment was assessed by 3D co-culturing of human endothelial cells and astrocytes, where the microdevice was verified as an acceptable in vitro BBB model according to the following four criteria: the formation of tight junctions at the cell–cell boundaries of the endothelial cells, evaluated by the expression of the tight junction marker ZO-1; the formation of actin filaments, evaluated using rhodamine phalloidin dye; low permeability, tested using the fluorescent tracer 40-kDa FITC-dextran; and good transendothelial electrical resistance (a measure of the tight junction integrity formed between the endothelial cells). The fabricated PDMS–PC microfluidic device ensured simple yet stable device sealing, and simultaneously enhanced BBB-mimicking cell attachment, thus fulfilling all major criteria for its application as a convenient in vitro BBB model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • K.H. Achyuta, A.J. Conway, R.B. Crouse, E.C. Bannister, R.N. Lee, C.P. Katnik, A.A. Behensky, J. Cuevas, S.S. Sundaram, Lab Chip 13, 542–553 (2013)

    Article  Google Scholar 

  • G. Adriani, D. Ma, A. Pavesi, R.D. Kamm, E.L.K. Goh, Lab Chip 17, 448–459 (2017)

    Article  Google Scholar 

  • G. Arcía-Ponce, A.F. Citalán-Madrid, M. Velázquez-Avila, H. Vargas-Robles, M. Schnoor, Thromb. Haemost. 113, 20–36 (2015)

    Article  Google Scholar 

  • K. Bemetz, C. Kober, V.K. Meyer, R. Niessner, M. Seidel, Anal. Bioanal. Chem. 411, 1943–1955 (2019)

    Article  Google Scholar 

  • S.N. Bhatia, D.E. Ingber, Nat. Biotechnol. 32, 760–772 (2014)

    Article  Google Scholar 

  • N.S. Bhise, J. Ribas, V. Anoharan, Y.S. Zhang, A. Polini, S. Massa, M.R. Dokmeci, A. Khademhosseini, J. Controll, Release 190, 82–93 (2014)

    Article  Google Scholar 

  • R. Booth, H. Kim, Lab Chip 12, 1784–1792 (2012)

    Article  Google Scholar 

  • J.A. Brown, V. Pensabene, D.A. Markov, V. Allwardt, M.D. Neely, M. Shi, C.M. Britt, O.S. Hoilett, Q. Yang, B.M. Brewer, P.C. Samson, L.J. McCawley, J.M. May, D.J. Webb, D. Li, A.B. Bowman, R.S. Reiserer, J.P. Wikswo, Biomicrofluidics 9, 1–15 (2015)

    Article  Google Scholar 

  • J.A. Brown, S.G. Codreanu, M. Shi, S.D. Sherrod, D.A. Markov, M.D. Neely, C.M. Britt, O.S. Hoilett, R.S. Reiserer, P.C. Samson, L.J. McCawley, D.J. Webb, A.B. Bowman, J.P. Wikswo, J. Neuroinflammation 13, 306 (2016)

    Article  Google Scholar 

  • X. Chen, S.W. Threlkeld, E.E. Cummings, I. Juan, O. Makeyev, W.G. Besio, J. Gaitanis, W.A. Banks, G.B. Sadowska, B.S. Stonestreet, Neuroscience 226, 89–100 (2012)

    Article  Google Scholar 

  • R. Daneman, B.A. Barres, Cell 123, 9–12 (2005)

    Article  Google Scholar 

  • C.X. Deng, Ther. Delivery 1, 819–848 (2010)

    Article  Google Scholar 

  • M.B. Esch, A.S.T. Smith, J.-M. Prot, C. Oleaga, J.J. Hickman, M.L. Shuler, Adv. Drug Deliv. Rev. 69–70, 158–169 (2014)

    Article  Google Scholar 

  • E.W. Esch, A. Bahinski, D. Huh, Nat. Rev. Drug Discov. 14, 248–260 (2015)

    Article  Google Scholar 

  • D. Huh, G.A. Hamilton, D.E. Ingber, Trends Cell Biol. 21, 745–754 (2011)

    Article  Google Scholar 

  • D. Huh, Y.S. Torisawa, G.A. Hamilton, H.J. Kim, D.E. Ingber, Lab Chip 12, 2156–2164 (2012)

    Article  Google Scholar 

  • S. Kuddannaya, J. Bao, Y. Zhang, ACS Appl. Mater. Interfaces 7, 25529–25538 (2015)

    Article  Google Scholar 

  • W.Y. Liu, Z.B. Wang, L.C. Zhang, X. Wei, L. Li, CNS Neurosci. Ther. 18, 609–615 (2012)

    Article  Google Scholar 

  • C. Luissint, C. Artus, F. Glacial, K. Ganeshamoorthy, P.O. Couraud, Fluids Barriers CNS. 9, 1–12 (2012)

    Article  Google Scholar 

  • S. Nag, Acta Neuropathol. 90, 454–460 (1995)

    Article  Google Scholar 

  • S. Nakagawa, M.A. Deli, H. Kawaguchi, T. Shimizudani, T. Shimono, Á. Kittele, K. Tanaka, M. Niwa, Neurochem. Int. 54, 253–263 (2009)

    Article  Google Scholar 

  • T.P.O. Nguyen, B.M. Tran, N.Y. Lee, Lab Chip 16, 3251–3259 (2016)

    Article  Google Scholar 

  • W.M. Pardridge, J. Cereb, Blood Flow Metab. 32, 1959–1972 (2012)

    Article  Google Scholar 

  • S.E. Park, A. Georgescu, J.M. Oh, K.W. Kwon, D. Huh, ACS Appl. Mater. Interfaces 11, 23919–23925 (2019)

  • E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature 507, 181–189 (2014)

    Article  Google Scholar 

  • J. Seok, H.S. Warren, A.G. Cuenca, M.N. Mindrinos, H.V. Baker, W. Xu, D.R. Richards, G.P. McDonald-Smith, H. Gao, L. Hennessy, C.C. Finnerty, C.M. López, S. Honari, E.E. Moore, J.P. Minei, J. Cuschieri, P.E. Bankey, J.L. Johnson, J. Sperry, A.B. Nathens, T.R. Billiar, M.A. West, M.G. Jeschke, M.B. Klein, R.L. Gamelli, N.S. Gibran, B.H. Brownstein, C. Miller-Graziano, S.E. Calvano, P.H. Mason, J.P. Cobb, L.G. Rahme, S.F. Lowry, R.V. Maier, L.L. Moldawer, D.N. Herndon, R.W. Davis, W. Xiao, R.G. Tompkins, Proc. Natl. Acad. Sci. U. S. A. 110, 3507–3512 (2013)

    Article  Google Scholar 

  • Y. Serlin, I. Shelef, B. Knyazer, A. Friedman, Semin. Cell Dev. Biol. 38, 2–6 (2015)

    Article  Google Scholar 

  • B. Srinivasan, A.R. Kolli, M.B. Esch, H.E. Abaci, M.L. Shuler, J.J. Hickman, J. Lab, Autom. 20, 107–126 (2015)

    Google Scholar 

  • L. Tang, N.Y. Lee, Lab Chip 10, 1274–1280 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2017R1A2B4008179) and also by the Gachon University research fund of 2018 (GCU-2018-0302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nae Yoon Lee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, P.Q.H., Duong, D.D., Kwun, J.D. et al. Hybrid elastomer–plastic microfluidic device as a convenient model for mimicking the blood–brain barrier in vitro. Biomed Microdevices 21, 90 (2019). https://doi.org/10.1007/s10544-019-0446-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0446-1

Keywords

Navigation