Skip to main content

Heterogeneously-Catalyzed Conversion of Carbohydrates

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 295))

Abstract

Polyfunctionality of carbohydrates and their low solubility in conventional organic solvents make rather complex their conversion to higher value added chemicals. Therefore, innovative processes are now strongly needed in order to increase the selectivity of these reactions. Here, we report an overview of the different heterogeneously-catalyzed processes described in the literature. In particular, hydrolysis, dehydration, oxidation, esterification, and etherification of carbohydrates are presented. We shall discuss the main structural parameters that need to be controlled and that permit the conversion of carbohydrates to bioproducts with good selectivity. The conversion of monosaccharides and disaccharides over solid catalysts, as well as recent advances in the heterogeneously-catalyzed conversion of cellulose, will be presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BMIM:

1-Butyl 3-methyl imidazolium

ChCl:

Choline chloride

DMSO:

Dimethylsulfoxide

HMF:

5-Hydroxymethylfurfural

HMS:

Hexagonal mesoporous silica

IL:

Ionic liquid

PMO:

Periodic mesoporous organosilica

PS:

Polystyrene

TBD:

Triazabicyclo[4.4.0.]dec-5-ene

TOF:

Turn over frequency

References

  1. Narayan R (1992) Emerging technologies for materials and chemicals from biomass. American Chemical Society, Washington, DC

    Google Scholar 

  2. Eissen M, Metzger JO, Schmid E, Schneidewind U (2002) Angew Chem 41:414–436

    CAS  Google Scholar 

  3. Barrault J, Pouilloux Y, Clacens JM, Vanhove C, Bancquart S (2002) Catal Today 75:177–181

    CAS  Google Scholar 

  4. Deffeyes KS (1981) Beyond oil: the view from Hubbert’s peak. Farrar Straus and Giroux, New York

    Google Scholar 

  5. Chow J, Kopp RJ, Portney PR (2003) Science 302:1528–1531

    Google Scholar 

  6. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502

    CAS  Google Scholar 

  7. Clark JH, Macquarrie DJ (2002) Handbook of green chemistry and technology. Blackwell, Oxford

    Google Scholar 

  8. Clark JH (1999) Green Chem:1–8

    Google Scholar 

  9. Anastas PA, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  10. Neier W (1991) Ion exchangers as catalysts. W. der Gruyter, Germany, p 1060

    Google Scholar 

  11. McGovern TJ, Dranoff JS (2004) Anniversary article. Bioengineering, food, and natural products. AIChE J 16:536–546

    Google Scholar 

  12. Cunha LM, Oliveira FAR (2000) J Food Eng 46:53–60

    Google Scholar 

  13. Anastas PT, Kirchhoff MM (2002) Acc Chem Res 35:686–694

    CAS  Google Scholar 

  14. Lichtenthaler FW (1991) Carbohydates as organic materials, vol 1. VCH, Weinheim

    Google Scholar 

  15. Descotes G (1993) Carbohydates as organic materials, vol 2. VCH, Weinheim

    Google Scholar 

  16. Van Bekkun H, Ropper H, Voragen AGJ (1996) Carbohydates as organic materials, vol 3. CRF, The Hague

    Google Scholar 

  17. Praznik W, Huber A (1998) Carbohydates as organic materials, vol 4. WUV-Universitätsverlag, Wien

    Google Scholar 

  18. Kunz M (1990) In: Lichtenthaler FW (ed) Carbohydrates as organic raw materials. New York, VCH

    Google Scholar 

  19. Lichtenthaler FW, Peters S (2004) C R Chim 7:65–90

    CAS  Google Scholar 

  20. Queneau Y, Fitremann J, Trombotto S (2004) C R Chim 7:177–188

    CAS  Google Scholar 

  21. Okuhara T (2002) Chem Rev 102:3641–3666

    CAS  Google Scholar 

  22. Zhang H (1989) CN Patent 1048233

    Google Scholar 

  23. Satyanarayana B, Varma YBG (1970) Indian J Technol 8:58–61

    CAS  Google Scholar 

  24. Masroua A, Revillon A, Martin JC, Guyot A, Descotes G (1988) Bull Soc Chim Fr 3:561–566

    Google Scholar 

  25. Hahn-Hägerdal B, Skoog K, Mattiasson B (1983) Eur J Microbiol Biotechnol 17:344–348

    Google Scholar 

  26. Yoshioka T, Shimamura M (1984) Bull Chem Soc Jpn 57:334–337

    CAS  Google Scholar 

  27. Mizota T, Tsuneda S, Saito K, Sugo T (1994) Ind Eng Chem Res 33:2215–2219

    CAS  Google Scholar 

  28. Nasefa MM, Saidia H, Sennab MM (2005) Chem Eng J 108:13–17

    Google Scholar 

  29. Abd El-Mohdy HL, Abd El-Rehim HA (2008) Chem Eng J 145:154–159

    CAS  Google Scholar 

  30. Chambré D, Idiţoiu C, Szabo MR (2007) J Thermal Anal Calorim 88:681–686

    Google Scholar 

  31. Chambre D, Szabo MR, Popescu C, Idiţoiu C (2008) J Thermal Anal Calorim 94:417–420

    CAS  Google Scholar 

  32. Buttersack C, Laketic D (1994) J Mol Catal 94:L283–L290

    Google Scholar 

  33. Bootsma JA, Shanks BH (2007) Appl Catal A 327:44–51

    CAS  Google Scholar 

  34. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem Int Ed 45:3216–3251

    CAS  Google Scholar 

  35. Inagaki S, Guan S, Ohsuna T, Terasaki O (2002) Nature 416:304–307

    CAS  Google Scholar 

  36. Rac B, Hegyes P, Forgo P, Molnar A (2006) Appl Catal A 299:193–201

    CAS  Google Scholar 

  37. Rat M, Zahedi-Niaki MH, Kaliaguine S, Do TO (2008) Microporous Mesoporous Mater 112:26–31

    CAS  Google Scholar 

  38. Yang Q, Kapoor MP, Inagaki S, Shirokura N, Kondo JN, Domen K (2005) J Mol Catal A 230:85–89

    CAS  Google Scholar 

  39. Yang Q, Liu J, Kapoor MP, Inagaki S, Li C (2004) J Catal 228:265–272

    CAS  Google Scholar 

  40. Dhepe PL, Ohashi M, Inagaki S, Ichikawa M, Fukuoka A (2005) Catal Lett 102:163–169

    CAS  Google Scholar 

  41. Takagaki A, Tagusagawa C, Domen K (2008) Chem Commun:5363–5365

    Google Scholar 

  42. Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M (2005) Nature 438:178

    CAS  Google Scholar 

  43. Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara M, Hayashi S (2006) Chem Mater 18:3039–3045

    CAS  Google Scholar 

  44. Nakajima K, Hara M (2007) J Am Ceram Soc 90:3725–3734

    CAS  Google Scholar 

  45. Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M (2009) J Phys Chem C 113:3181–3188

    CAS  Google Scholar 

  46. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) J Am Chem Soc 130:12787–12793

    CAS  Google Scholar 

  47. Onda A, Ochi T, Yanagisawa K (2009) Top Catal 52:801–807

    CAS  Google Scholar 

  48. Dhepe LP, Fukuoka A (2008) ChemSusChem 1:969–975

    CAS  Google Scholar 

  49. Fukuoka A, Dhepe LP (2006) Angew Chem 47:8510–8513

    Google Scholar 

  50. Luo C, Wang S, Liu H (2007) Angew Chem 46:7636–7639

    CAS  Google Scholar 

  51. Deng W, Tan X, Fang W, Zhang Q, Wang Y (2009) Catal Lett. doi: 10.1007/s10562-009-0136-3

    Google Scholar 

  52. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Angew Chem 47:8510–8513

    CAS  Google Scholar 

  53. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y, Stottlemyer AL, Chen JG (2009) Catal Today 147:77–85

    CAS  Google Scholar 

  54. Rinaldi R, Palkovits R, Schüth F (2008) Angew Chem 47:1–5

    Google Scholar 

  55. Lichtenthaler FW (2002) Acc Chem Res 35:728–737

    CAS  Google Scholar 

  56. Gandini A (1992) Polymers from renewable resources. In: Aggarwal SL, Russo S (eds) Comprehensive polymer science, Suppl 1. Pergamon, Oxford

    Google Scholar 

  57. Kunz M (1993) Hydroxymethylfurfural, a possible basic chemical for industrial intermediates. In: Fuchs A (ed) Inulin and inulin-containing crops. Elsevier, Amsterdam

    Google Scholar 

  58. Gandini A, Belgacem MN (2002) Actual Chim:56–59

    Google Scholar 

  59. Moreau C, Belgacem MN, Gandini A (2004) Top Catal 27:11–30

    CAS  Google Scholar 

  60. Cottier L, Descotes G (1991) Trends Heterocycl Chem 2:233–248

    CAS  Google Scholar 

  61. Faury A, Gaset A, Gorrichon JP (1981) Inf Chim 214:203

    CAS  Google Scholar 

  62. Gaset A, Gorrichon JP, Truchot E (1981) Inf Chim 212:179

    CAS  Google Scholar 

  63. Kuster BFM (1990) Starch/Stärke 42:314–321

    CAS  Google Scholar 

  64. Lewkowski J (2001) ArkiVoc 2:17–54

    Google Scholar 

  65. Dull G (1895) Chem Ztg 19:216–220

    Google Scholar 

  66. Kiermayer J (1895) Chem Ztg 19:1003–1006

    CAS  Google Scholar 

  67. Haworth WN, Jones WGM (1944) J Chem Soc Chem Soc:667–670

    Google Scholar 

  68. Van Dam HE, Kieboom APG, Van Bekkum H (1986) Starch/Stärke 38:95–101

    Google Scholar 

  69. Antal MJ, Mok WSL, Richards GN (1990) Carbohydr Res 199:91–109

    CAS  Google Scholar 

  70. Cottier L, Descotes G, Neyret C, Nigay H (1989) Ind Aliment Agricol:567–570

    Google Scholar 

  71. Pummerer R, Guyot O, Birkofer L (1935) Chem Ber 68B:480–493

    CAS  Google Scholar 

  72. Horvat J, Klaic B, Metelko B, Sunjic V (1985) Tetrahedron Lett 26:2111

    CAS  Google Scholar 

  73. Jing Q, Xiuyang LU (2008) Chin J Chem Eng 16:890–894

    CAS  Google Scholar 

  74. Carlini C, Giuttari M, Raspolli Galletti AM, Sbrana G, Armaroli T, Busca G (1999) Appl Catal A 183:295–302

    CAS  Google Scholar 

  75. Benvenuti F, Carlini C, Patrono P, Raspolli Galletti AM, Sbrana G, Massucci MA, Galli P (2000) Appl Catal A 193:147–153

    CAS  Google Scholar 

  76. Carlini C, Patrono P, Raspolli Galletti AM, Sbrana G (2004) Appl Catal A 275:111–118

    CAS  Google Scholar 

  77. Asghari FS, Yoshida H (2006) Carbohydr Res 341:2379–2387

    CAS  Google Scholar 

  78. Watanabe M, Aizawa Y, Toru I, Nishimura Ryo, Inomata H (2005) Appl Catal A 295:150–156

    CAS  Google Scholar 

  79. Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K, Inomata H (2005) Carbohydr Res 340:1925–1930

    CAS  Google Scholar 

  80. Qi X, Watanabe M, Aida TM, Smith RL Jr (2008) Catal Commun 9:2244–2249

    CAS  Google Scholar 

  81. Lourvanij K, Rorrer GL (1994) Appl Catal A 109:147–165

    CAS  Google Scholar 

  82. Jow J, Rorrer GL, Hawley MC, Lamport DTA (1987) Biomass 14:185–194

    CAS  Google Scholar 

  83. Lourvanij K, Rorrer GL (1993) Ind Eng Chem Res 32:11–19

    CAS  Google Scholar 

  84. Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G (1996) Appl Catal A 145:211–224

    CAS  Google Scholar 

  85. Moreau C, Durand R, Pourcheron C, Razigade S (1994) Ind Crops Prod 3:85–90

    CAS  Google Scholar 

  86. Nakamura Y, Morikawa S (1980) Bull Chem Soc Jpn 53:3705–3706

    CAS  Google Scholar 

  87. Cottier L, Descotes G, Neyret C, Nigay H (1990) FR 9011479

    Google Scholar 

  88. Brown DW, Floyd AJ, Kinsman RG, Roshanhyphen Y (1982) J Chem Technol Biotechnol 32:920–924

    CAS  Google Scholar 

  89. El Hajj T, Masroua A, Martin JC, Descotes G (1987) Bull Soc Chim Fr 855–860

    Google Scholar 

  90. Mercadier D, Rigal L, Gaset A, Gorrichon JP (1981) J Chem Technol Biotechnol 31:503–508

    CAS  Google Scholar 

  91. Takagaki A, Ohara M, Nishimura S, Ebitani K (2009) Chem Commun. doi: 10.1039/b914087e

    Google Scholar 

  92. Qi X, Watanabe M, Aida TM, Smith RL Jr (2008) Green Chem 8:799–805

    Google Scholar 

  93. Fleche G, Gaset A, Gorrichon JP, Truchot E, Sicard P (1982) US 4339487

    Google Scholar 

  94. Rigal L, Gorrichon JP, Gaset A, Heughebaert JC (1985) Biomass 7:27–45

    CAS  Google Scholar 

  95. Lansalot-Matras C, Moreau C (2003) Catal Commun 4:517–520

    CAS  Google Scholar 

  96. Qi X, Watanabe M, Aida TM, Smith RL (2009) ChemSusChem. doi: 10.1002/cssc.200900199

    Google Scholar 

  97. Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, König B (2009) Green Chem. doi: 10.1039/b917548m

    Google Scholar 

  98. Collins PM, Ferrier RJ (1995) Oxidations monosaccharides: their chemistry and their role in natural products. Wiley, New York

    Google Scholar 

  99. Madsen R (2008) Oxidation, reduction and deoxygenation. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience, chemistry and chemical biology, oxidation, reduction and deoxygenation. Springer, Heidelberg

    Google Scholar 

  100. Besemer AC, Van Bekkum H (1996) Calcium sequestering agents based on carbohydrates. In: Van Bekkum H, Röper H, Voragen AGJ (eds) Carbohydrates as organic raw materials. VCH, Wheineim

    Google Scholar 

  101. de Nooy AEJ, Besemer AC, Van Bekkum H (1998) New polyelectrolytes by selective oxidation of polysaccharides. In: Praznik W, Huber H (eds) Carbohydrates as organic raw materials. WUV, Vienna

    Google Scholar 

  102. Mäki-Arvela P, Holmbom B, Salmi T, Murzin DY (2007) Catal Rev 49:197–340

    Google Scholar 

  103. Fritsche-Lang W, Leopold I, Schlingmann M (1987) DE Patent 3535720

    Google Scholar 

  104. Kunz M, Puke H, Recker C, Scheiwe L, Kowalczyk J (1994) DE 4307388

    Google Scholar 

  105. Kunz M, Schwarz A, Kowalczyk J (1997) DE 19542287

    Google Scholar 

  106. Edye LA, Meehan GV, Richards GN (1994) J Carbohydr Chem 13:273–283

    CAS  Google Scholar 

  107. Edye LA, Meehan GV, Richards GN (1991) J Carbohydr Chem 10:11–23

    CAS  Google Scholar 

  108. Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Food Technol Biotechnol 44:185–195

    CAS  Google Scholar 

  109. Dirkx JMH, Van der Ban HS (1981) J Catal 67:1–13

    CAS  Google Scholar 

  110. Abbadi A, Van Bekkum H (1995) J Mol Cat A Chem 97:111–118

    CAS  Google Scholar 

  111. Hattori K, Miya B, Matsuda M, Ishii M, Saito H, Watanabe H, Takizawa H (1976) JP 53040713

    Google Scholar 

  112. Besson M, Gallezot P, Lahmer E, Flèche G, Fuertes P (1993) Oxidation of glucose on palladium catalysts: particle size and support effects. In: Kosak JR, Johnson TA (eds) Catalysis of organic reactions. Marcel Dekker, New York

    Google Scholar 

  113. Fuertes P, F1èche G, Frères R (1987) EP 233816

    Google Scholar 

  114. Besson M, Flèche G, Fuertes P, Gallezot P, Lahmer F (1996) Recl Trav Chim Pays Bas 115:217–221

    CAS  Google Scholar 

  115. Besson M, Lahmer F, Gallezot P, Fuertes P, Flèche G (1995) J Catal 152:116–121

    CAS  Google Scholar 

  116. Gallezot P (1997) Catal Today 37:405–418

    CAS  Google Scholar 

  117. Karski S, Witońska I, Gołuchowska J (2006) J Mol Cat A Chem 245:225–230

    CAS  Google Scholar 

  118. Bönnemann H, Brijoux W, Brinkmann R, Schulze Tilling A, Schilling T, Tesche B, Seevogel B, Franke R, Hormes J, Köhl G, Pollmann J, Rothe J, Vogel W (1998) Inorg Chim Acta 270:95–110

    Google Scholar 

  119. Biella S, Prati L, Rossi M (2002) J Catal 206:242–247

    CAS  Google Scholar 

  120. Önal Y, Schimpf S, Claus P (2004) J Catal 223:122–133

    Google Scholar 

  121. Comotti M, Della Pina C, Matarrese R, Rossi M, Siani A (2005) Appl Catal A 291:204–209

    CAS  Google Scholar 

  122. Beltrame P, Della Pina C, Rossi M, Comotti M (2006) Appl Catal A 297:1–7

    CAS  Google Scholar 

  123. Mirescu A, Prüße U (2006) Catal Commun 7:11–17

    CAS  Google Scholar 

  124. Huford JR (1980) Surface-active agents derived from disaccharides. In: Lee CK (ed) Developments in food carbohydrates. Applied Science, England

    Google Scholar 

  125. Kosaka T, Yamada T (1977) New plant and applications of sucrose esters. In: Hickson JL (ed) Sucrochemistry. ACS Symposium Series, Washington, DC

    Google Scholar 

  126. Okabe S, Suganuma M, Tada Y, Ochiai Y, Sueoka E, Kohya H, Shibata A, Takahashi M, Mizutani M, Matsuzaki T, Fujiki H (1999) Jpn J Cancer Res 90:669–676

    CAS  Google Scholar 

  127. Puterka GJ, Farone W, Palmer T, Barrington A (2003) J Econ Entomol 96:636–644

    CAS  Google Scholar 

  128. Wang Y (1988) Synthesis and application of sucrose ester. Light Industrial, London

    Google Scholar 

  129. Kharchafi G, Jerôme K, Adam I, Pouilloux Y, Barrault J (2005) New J Chem 26:928–934

    Google Scholar 

  130. Van Rhijn W, De Vos D, Bossaert W, Bullen J, Wouters B, Grobet P, Jacobs P (1998) Stud Surf Sci Catal 117:183–190

    Google Scholar 

  131. Corma A, Hamid SBA, Iborra S, Velty A (2008) ChemSusChem 1:85–90

    CAS  Google Scholar 

  132. Van Es DS, Frissen AE, Luitjes H (2001) WO 2001083488

    Google Scholar 

  133. Usmani AM, Salyer IO (1981) Org Coatings Appl Polym Sci Proc 46:269

    CAS  Google Scholar 

  134. Ronan P, Adam I, Fitremann J, Jérôme F, Bouchu A, Courtois G, Barrault J, Queneau Y (2004) C R Chimie 7:151–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Jérôme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Vigier, K.D.O., Jérôme, F. (2010). Heterogeneously-Catalyzed Conversion of Carbohydrates. In: Rauter, A., Vogel, P., Queneau, Y. (eds) Carbohydrates in Sustainable Development II. Topics in Current Chemistry, vol 295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_55

Download citation

Publish with us

Policies and ethics