Skip to main content
Log in

Orexin A-induced extracellular calcium influx in prefrontal cortex neurons involves L-type calcium channels

Implicación de los canales L de Ca2+ en el efecto de la orexina A sobre la entrada de Ca2+ extracelular en neuronas de la corteza prefrontal de rata

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Orexins, novel excitatory neuropeptides from the lateral hypothalamus, have been strongly implicated in the regulation of sleep and wakefulness. In this study, we explored the effects and mechanisms of orexin A on intracellular free Ca2+ concentration ([Ca2+]i) of freshly dissociated neurons from layers V and VI in prefrontal cortex (PFC). Changes in [Ca2+]i were measured with fluo-4/AM using confocal laser scanning microscopy. The results revealed that application of orexin A (0.1 ≈1 μM) induced increase of [Ca2+]i in a dose-dependent manner. This elevation of [Ca2+]i was completely blocked by pretreatment with selective orexin receptor 1 antagonist SB 334867. While depletion of intracellular Ca2+ stores by the endoplasmic reticulum inhibitor thapsigargin (2 μM), [Ca2+]i in PFC neurons showed no increase in response to orexin A. Under extracellular Ca2+-free condition, orexin A failed to induce any changes of Ca2+ fluorescence intensity in these acutely dissociated cells. Our data further demonstrated that the orexin A-induced increase of [Ca2+]i was completely abolished by the inhibition of intracellular protein kinase C or phospholipase C activities using specific inhibitors, BIS II (1 μM) and D609 (10 μM), respectively. Selective blockade of L-type Ca2+ channels by nifedipine (5 μM) significantly suppressed the elevation of [Ca2+]i induced by orexin A. Therefore, these findings suggest that exposure to orexin A could induce increase of [Ca2+]i in neurons from deep layers of PFC, which depends on extracellular Ca2+ influx via L-type Ca2+ channels through activation of intracellular PLC-PKC signaling pathway by binding orexin receptor 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammoun, S., Johansson, L., Ekholm, M.E., Holmqvist, T., Danis, A.S., Korhonen, L., Sergeeva, O.A., Haas, H.L., Akerman, K.E. Kukkonen, J.P. (2006): OX1 orexin receptors activate extracellular signal-regulated kinase in Chinese hamster ovary cells via multiple mechanisms: the role of Ca2+ influx in OX1 receptor signaling.Mol Endocrinol,20, 80–99.

    Article  CAS  PubMed  Google Scholar 

  2. Bayer, L., Serafin, M., Eggermann, E., Saint-Mleux, B., Machard, D., Jones, B.E. Muhlethaler, M. (2004): Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons.J Neurosci,24, 6760–6764.

    Article  CAS  PubMed  Google Scholar 

  3. Burdakov, D., Liss, B. Ashcroft, F.M. (2003): Orexin excites GABAergic neurons of the arcuate nucleus by activating the sodium—calcium exchanger.J Neurosci,23, 4951–4957.

    CAS  PubMed  Google Scholar 

  4. Chen, C. Xu, R. (2003): The in vitro regulation of growth hormone secretion by orexins.Endocrine,22, 57–66.

    Article  PubMed  Google Scholar 

  5. Chen, X.W., Mu, Y., Huang, H.P., Guo, N., Zhang, B., Fan, S.Y., Xiong, J.X., Wang, S.R., Xiong, W., Huang, W., Liu, T., Zheng, L.H., Zhang, C.X., Li, L.H., Yu, Z.P., Hu, Z.A. Zhou, Z. (2008): Hypocretin-1 potentiates NMDA receptor-mediated somatodendritic secretion from locus ceruleus neurons.J Neurosci,28, 3202–3208.

    Article  CAS  PubMed  Google Scholar 

  6. Davis, P.D., Hill, C.H., Lawton, G., Nixon, J.S., Wilkinson, S.E., Hurst, S.A., Keech, E. Turner, S.E. (1992): Inhibitors of protein kinase C. 1. 2,3-Bisarylmaleimides.J Med Chem,35, 177–184.

    Article  CAS  PubMed  Google Scholar 

  7. De Lecea, L., Kilduff, T.S., Peyron, C., Gao, X., Foye, P.E., Danielson, P.E., Fukuhara, C., Battenberg, E.L., Gautvik, V.T., Bartlett, F.S., 2nd, Frankel, W.N., van den Pol, A.N., Bloom, F.E., Gautvik, K.M. Sutcliffe, J.G. (1998): The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity.Proc Natl Acad Sci U S A,95, 322–327.

    Article  PubMed  Google Scholar 

  8. Ekholm, M.E., Johansson, L. Kukkonen, J.P. (2007): IP3-independent signalling of OX1 orexin/ hypocretin receptors to Ca2+ influx and ERK.Biochem Biophys Res Commun,353, 475–480.

    Article  CAS  PubMed  Google Scholar 

  9. Eriksson, K.S., Sergeeva, O., Brown, R.E. Haas, H.L. (2001): Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus.J Neurosci,21, 9273–9279.

    CAS  PubMed  Google Scholar 

  10. Holmqvist, T., Akerman, K.E. Kukkonen, J.P. (2002): Orexin signaling in recombinant neuronlike cells.FEBS Lett,526, 11–14.

    Article  CAS  PubMed  Google Scholar 

  11. Ishibashi, M., Takano, S., Yanagida, H., Takatsuna, M., Nakajima, K., Oomura, Y., Wayner, M.J. Sasaki, K. (2005): Effects of orexins/hypocretins on neuronal activity in the paraventricular nucleus of the thalamus in rats in vitro.Peptides,26, 471–481.

    Article  CAS  PubMed  Google Scholar 

  12. Johansson, L., Ekholm, M.E. Kukkonen, J.P. (2008): Multiple phospholipase activation by OX(1) orexin/hypocretin receptors.Cell Mol Life Sci,65, 1948–1956.

    Article  CAS  PubMed  Google Scholar 

  13. Johansson, L., Ekholm, M.E. Kukkonen, J.P. (2007): Regulation of OX1 orexin/hypocretin receptor-coupling to phospholipase C by Ca2+ influx.Br J Pharmacol,150, 97–104.

    Article  CAS  PubMed  Google Scholar 

  14. Kohlmeier, K.A., Inoue, T. Leonard, C.S. (2004): Hypocretin/orexin peptide signaling in the ascending arousal system: elevation of intracellular calcium in the mouse dorsal raphe and laterodorsal tegmentum.J Neurophysiol,92, 221–235.

    Article  CAS  PubMed  Google Scholar 

  15. Kohlmeier, K.A., Watanabe, S., Tyler, C.J., Burlet, S. Leonard, C.S. (2008): Dual orexin actions on dorsal raphe and laterodorsal tegmentum neurons: noisy cation current activation and selective enhancement of Ca2+ transients mediated by L-type calcium channels.J Neurophysiol,100, 2265–2281.

    Article  CAS  PubMed  Google Scholar 

  16. Kukkonen, J.P. Akerman, K.E. (2001): Orexin receptors couple to Ca2+ channels different from store-operated Ca2+ channels.Neuroreport,12, 2017–2020.

    Article  CAS  PubMed  Google Scholar 

  17. Lambe, E.K. Aghajanian, G.K. (2003): Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice.Neuron,40, 139–150.

    Article  CAS  PubMed  Google Scholar 

  18. Larsson, K.P., Akerman, K.E., Magga, J., Uotila, S., Kukkonen, J.P., Nasman, J. Herzig, K.H. (2003): The STC-1 cells express functional orexin-A receptors coupled to CCK release.Biochem Biophys Res Commun,309, 209–216.

    Article  CAS  PubMed  Google Scholar 

  19. Larsson, K.P., Peltonen, H.M., Bart, G., Louhivuori, L.M., Penttonen, A., Antikainen, M., Kukkonen, J.P. Akerman, K.E. (2005): Orexin-A-induced Ca2+ entry: evidence for involvement of trpc channels and protein kinase C regulation.J Biol Chem,280, 1771–1781.

    Article  CAS  PubMed  Google Scholar 

  20. Lund, P.E., Shariatmadari, R., Uustare, A., Detheux, M., Parmentier, M., Kukkonen, J.P. Akerman, K.E. (2000): The orexin OX1 receptor activates a novel Ca2+ influx pathway necessary for coupling to phospholipase C.J Biol Chem,275, 30806–30812.

    Article  CAS  PubMed  Google Scholar 

  21. Magga, J., Bart, G., Oker-Blom, C., Kukkonen, J.P., Akerman, K.E. Nasman, J. (2006): Agonist potency differentiates G protein activation and Ca2+ signalling by the orexin receptor type 1.Biochem Pharmacol,71, 827–836.

    Article  CAS  PubMed  Google Scholar 

  22. Muroya, S., Funahashi, H., Yamanaka, A., Kohno, D., Uramura, K., Nambu, T., Shibahara, M., Kuramochi, M., Takigawa, M., Yanagisawa, M., Sakurai, T., Shioda, S. Yada, T. (2004): Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus.Eur J Neurosci,19, 1524–1534.

    Article  PubMed  Google Scholar 

  23. Narita, M., Nagumo, Y., Miyatake, M., Ikegami, D., Kurahashi, K. Suzuki, T. (2007): Implication of protein kinase C in the orexin-induced elevation of extracellular dopamine levels and its rewarding effect.Eur J Neurosci,25, 1537–1545.

    Article  PubMed  Google Scholar 

  24. Nasman, J., Bart, G., Larsson, K., Louhivuori, L., Peltonen, H. Akerman, K.E. (2006): The orexin OX1 receptor regulates Ca2+ entry via diacylglycerol-activated channels in differentiated neuroblastoma cells.J Neurosci,26, 10658–10666.

    Article  CAS  PubMed  Google Scholar 

  25. Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R.M., Tanaka, H., Williams, S.C., Richardson, J.A., Kozlowski, G.P., Wilson, S., Arch, J.R., Buckingham, R.E., Haynes, A.C., Carr, S.A., Annan, R.S., McNulty, D.E., Liu, W.S., Terrett, J.A., Elshourbagy, N.A., Bergsma, D.J. Yanagisawa, M. (1998): Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior.Cell,92, 573–585.

    Article  CAS  PubMed  Google Scholar 

  26. Saper, C.B., Scammell, T.E. Lu, J. (2005): Hypothalamic regulation of sleep and circadian rhythms.Nature,437, 1257–1263.

    Article  CAS  PubMed  Google Scholar 

  27. Smart, D., Jerman, J.C., Brough, S.J., Rushton, S.L., Murdock, P.R., Jewitt, F., Elshourbagy, N.A., Ellis, C.E., Middlemiss, D.N. Brown, F. (1999): Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR.Br J Pharmacol,128, 1–3.

    Article  CAS  PubMed  Google Scholar 

  28. Smart, D., Sabido-David, C., Brough, S.J., Jewitt, F., Johns, A., Porter, R.A. Jerman, J.C. (2001): SB-334867-A: the first selective orexin-1 receptor antagonist.Br J Pharmacol,132, 1179–1182.

    Article  CAS  PubMed  Google Scholar 

  29. Song, C.H., Chen, X.W., Xia, J.X., Yu, Z.P. Hu, Z.A. (2006): Modulatory effects of hypocretin-1/orexin-A with glutamate and gammaaminobutyric acid on freshly isolated pyramidal neurons from the rat prefrontal cortex.Neurosci Lett,399, 101–105.

    Article  CAS  PubMed  Google Scholar 

  30. Song, C.H., Xia, J.X., Ye, J.N., Chen, X.W., Zhang, C.Q., Gao, E.Q. Hu, Z.A. (2005): Signaling pathways of hypocretin-1 actions on pyramidal neurons in the rat prefrontal cortex.Neuroreport,16, 1529–1533.

    Article  CAS  PubMed  Google Scholar 

  31. Toullec, D., Pianetti, P., Coste, H., Bellevergue, P., Grand-Perret, T., Ajakane, M., Baudet, V., Boissin, P., Boursier, E., Loriolle, F.et al. (1991): The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C.J Biol Chem,266, 15771–15781.

    CAS  PubMed  Google Scholar 

  32. Trivedi, P., Yu, H., MacNeil, D.J., Van der Ploeg, L.H. Guan, X.M. 1998): Distribution of orexin receptor mRNA in the rat brain.FEBS Lett,438, 71–75.

    Article  CAS  PubMed  Google Scholar 

  33. Uramura, K., Funahashi, H., Muroya, S., Shioda, S., Takigawa, M. Yada, T. (2001): Orexin-a activates phospholipase C- and protein kinase Cmediated Ca2+ signaling in dopamine neurons of the ventral tegmental area.Neuroreport,12, 1885–1889.

    Article  CAS  PubMed  Google Scholar 

  34. Van den Pol, A.N., Gao, X.B., Obrietan, K., Kilduff, T.S. Belousov, A.B. (1998): Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin.J Neurosci,18, 7962–7971.

    PubMed  Google Scholar 

  35. Wu, M., Zaborszky, L., Hajszan, T., van den Pol, A.N. Alreja, M. (2004): Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons.J Neurosci,24, 3527–3536.

    Article  CAS  PubMed  Google Scholar 

  36. Xia, J., Chen, X., Song, C., Ye, J., Yu, Z. Hu, Z. (2005): Postsynaptic excitation of prefrontal cortical pyramidal neurons by hypocretin-1/orexin A through the inhibition of potassium currents.J Neurosci Res,82, 729–736.

    Article  CAS  PubMed  Google Scholar 

  37. Xia, J.X., Chen, X.W., Cheng, S.Y. Hu, Z.A. (2005): Mechanisms of orexin A-evoked changes of intracellular calcium in primary cultured cortical neurons.Neuroreport,16, 783–786.

    Article  CAS  PubMed  Google Scholar 

  38. Xu, R., Roh, S.G., Gong, C., Hernandez, M., Ueta, Y. Chen, C. (2003): Orexin-B augments voltage-gated L-type Ca(2+) current via protein kinase C-mediated signalling pathway in ovine somatotropes.Neuroendocrinology,77, 141–152.

    Article  CAS  PubMed  Google Scholar 

  39. Xu, R., Wang, Q., Yan, M., Hernandez, M., Gong, C., Boon, W.C., Murata, Y., Ueta, Y. Chen, C. (2002): Orexin-A augments voltagegated Ca2+ currents and synergistically increases growth hormone (GH) secretion with GHreleasing hormone in primary cultured ovine somatotropes.Endocrinology,143, 4609–4619.

    Article  CAS  PubMed  Google Scholar 

  40. Yamasaki, H., LaBar, K.S. McCarthy, G. (2002): Dissociable prefrontal brain systems for attention and emotion.Proc Natl Acad Sci U S A,99, 11447–11451.

    Article  CAS  PubMed  Google Scholar 

  41. Ye, J.H. Akaike, N. (1993): Calcium currents in pyramidal neurons acutely dissociated from the rat frontal cortex: a study by the nystatin perforated patch technique.Brain Res,606, 111–117.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu, Y., Miwa, Y., Yamanaka, A., Yada, T., Shibahara, M., Abe, Y., Sakurai, T. Goto, K. (2003): Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins.J Pharmacol Sci,92, 259–266.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, J.X., Fan, S.Y., Yan, J. et al. Orexin A-induced extracellular calcium influx in prefrontal cortex neurons involves L-type calcium channels. J Physiol Biochem 65, 125–136 (2009). https://doi.org/10.1007/BF03179063

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179063

Key words

Navigation