Skip to main content
Log in

Electron Tomography Revels that Milk Lipids Originate from Endoplasmic Reticulum Domains with Novel Structural Features

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Lipid droplets (LD) are dynamically-regulated organelles that originate from the endoplasmic reticulum (ER), and function in the storage, trafficking and metabolism of neutral lipids. In mammary epithelial cells (MEC) of lactating animals, intact LD are secreted intact into milk to form milk lipids by a novel apocrine mechanism. The secretion of intact LD and the relatively large amounts of lipid secreted by lactating MEC increase demands on the cellular processes responsible for lipid synthesis and LD formation. As yet these processes are poorly defined due to limited understanding of LD-ER interactions. To overcome these limitations, we used rapid-freezing and freeze-substitution methods in conjunction with 3D electron tomography and high resolution immunolocalization to define interactions between LD with ER in MEC of pregnant and lactating rats. Using these approaches, we identified distinct ER domains that contribute to lipid droplet formation and stabilization and which possess unique features previously unrecognized or not fully appreciated. Our results show nascent lipid droplets within the ER lumen and the association of both forming and mature droplets with structurally unique regions of ER cisternae, characterized by the presence of perilipin-2, a protein implicated in lipid droplet formation, and enzymes involved in lipid synthesis. These data demonstrate that milk lipids originate from LD-ER domains with novel structural features and suggest a mechanism for initial droplet formation in the ER lumen and subsequent maturation of the droplets in association with ER cisternae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Acat1:

Acyl-CoA cholesterol acyltransferase-1

Dgat:

Acyl-CoA diacylglycerol acyltransferase

EM:

Electron microscopy

ER:

Endoplasmic reticulum

LD:

Lipid droplets

MEC:

Mammary epithelial cell

MFG:

Milk fat globules

NR:

Nile red

Plin2:

Perilipin-2

P5:

Pregnancy day 5

P10:

Pregnancy day 10

PDI:

Protein disulfide isomerase

3D:

Three-dimensional

2D:

Two-dimensional

References

  1. Oftedal OT. Milk composition, milk yield and energy output at peak lactation: a comparative review. 1984;51:33-85.

  2. Walther TC, Chung J, Farese RV Jr. Lipid Droplet Biogenesis. Annu Rev Cell Dev Biol. 2017;33:491–510.

    CAS  PubMed  Google Scholar 

  3. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem. 2002;277(46):44507–12.

    CAS  PubMed  Google Scholar 

  4. Wu CC, Howell KE, Neville MC, Yates JR 3rd, McManaman J. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis. 2000;21(16):3470–82.

    CAS  PubMed  Google Scholar 

  5. Fujimoto T, Parton RG. Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol 2011;3(3).

    PubMed  PubMed Central  Google Scholar 

  6. Greenberg AS, Coleman RA, Kraemer FB, McManaman J, Obin MS, Puri V, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011;121(6):2102–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. McManaman JL. Milk lipid secretion: recent biomolecular aspects. Biomol Concepts. 2012;3:581–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Butovich IA. Meibomian glands, meibum, and meibogenesis. Exp Eye Res. 2017;163:2–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schneider MR. Lipid droplets and associated proteins in sebocytes. Exp Cell Res. 2016;340(2):205–8.

    CAS  PubMed  Google Scholar 

  10. Oftedal OT, Iverson SJ. Comparative analysis of nonhuman milks. In handbook of Milk composition (Jensen, R.G. ed), pp 749-789, academic press; 1995.

  11. Hollmann KH. Cytology and fine structure of the mammary gland. In lactation (Larson BL, Smith VR eds), pp 3-95, Academic Press; 1974.

  12. Wooding FBP. Comparative mammary fine structure. In comparative aspects of lactation (Peaker, M. ed), pp. 1-41, Academic Press. 1977.

  13. Mellenberger RW, Bauman DE. Metabolic adaptations during lactogenesis. Fatty acid synthesis in rabbit mammary tissue during pregnancy and lactation. Biochem J. 1974;138(3):373–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Anderson SM, et al. Key stages in mammary gland development. Secretory activation in the mammary gland: it's not just about milk protein synthesis! Breast Cancer Res. 2007;9(1):204.

    PubMed  PubMed Central  Google Scholar 

  15. Stein O, Stein Y. Lipid synthesis, intracellular transport, and secretion. II Electron microscopic radioautographic study of the mouse lactating mammary gland. J Cell Biol. 1967;34(1):251–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Keenan TW, Dylewski DP. Aspects of intracellular transit of serum and lipid phases of milk. J Dairy Sci. 1985;68(4):1025–40.

    CAS  PubMed  Google Scholar 

  17. Heid HW, Keenan TW. Intracellular origin and secretion of milk fat globules. Eur J Cell Biol. 2005;84(2–3):245–58.

    CAS  PubMed  Google Scholar 

  18. Choudhary V, Ojha N, Golden A, Prinz WA. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J Cell Biol. 2015;211(2):261–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Thiam AR, Farese RV Jr, Walther TC. The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol. 2013;14(12):775–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H et al. Seipin is required for converting nascent to mature lipid droplets Elife 5. 2016.

  21. Choudhary V, Jacquier N, Schneiter R. The topology of the triacylglycerol synthesizing enzyme Lro1 indicates that neutral lipids can be produced within the luminal compartment of the endoplasmatic reticulum: implications for the biogenesis of lipid droplets. Commun Integr Biol. 2011;4(6):781–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ. Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci. 2006;119(Pt 20):4215–24.

    CAS  PubMed  Google Scholar 

  23. Ploegh HL. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature. 2007;448(7152):435–8.

    CAS  PubMed  Google Scholar 

  24. Al-Amoudi A, et al. Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J Struct Biol. 2004;148(1):131–5.

    CAS  PubMed  Google Scholar 

  25. Fujimoto T, Ohsaki Y, Suzuki M, Cheng J. Imaging lipid droplets by electron microscopy. Methods Cell Biol. 2013;116:227–51.

    CAS  PubMed  Google Scholar 

  26. Pfeiffer S, Vielhaber G, Vietzke JP, Wittern KP, Hintze U, Wepf R. High-pressure freezing provides new information on human epidermis: simultaneous protein antigen and lamellar lipid structure preservation. Study on human epidermis by cryoimmobilization. J Invest Dermatol. 2000;114(5):1030–8.

    CAS  PubMed  Google Scholar 

  27. McIntosh JR. Electron microscopy of cells: a new beginning for a new century. J Cell Biol. 2001;153(6):F25–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu CC, Yates JR 3rd, Neville MC, Howell KE. Proteomic analysis of two functional states of the Golgi complex in mammary epithelial cells. Traffic. 2000;1(10):769–82.

    CAS  PubMed  Google Scholar 

  29. Orlicky DJ, Degala G, Greenwood C, Bales ES, Russell TD, McManaman J. Multiple functions encoded by the N-terminal PAT domain of adipophilin. J Cell Sci. 2008;121(Pt 17):2921–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Morphew MK, McIntosh JR. The use of filter membranes for high-pressure freezing of cell monolayers. J Microsc. 2003;212(Pt 1):21–5.

    CAS  PubMed  Google Scholar 

  31. Kremer JR, Mastronarde DN, McIntosh J. Computer visualization of three-dimensional image data using IMOD. J Struct Biol. 1996;116(1):71–6.

    CAS  PubMed  Google Scholar 

  32. Ladinsky MS, Wu CC, McIntosh S, McIntosh J, Howell KE. Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments. Mol Biol Cell. 2002;13(8):2810–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia. 1998;3(3):259–73.

    CAS  PubMed  Google Scholar 

  34. Clermont Y, Xia L, Rambourg A, Turner JD, Hermo L. Structure of the Golgi apparatus in stimulated and nonstimulated acinar cells of mammary glands of the rat. Anat Rec. 1993;237:308–17.

    CAS  PubMed  Google Scholar 

  35. Clermont Y, Xia L, Rambourg A, Turner JD, Hermo L. Transport of casein submicelles and formation of secretion granules in the Golgi apparatus of epithelial cells of the lactating mammary gland of the rat. Anat Rec. 1993;235(3):363–73.

    CAS  PubMed  Google Scholar 

  36. Russell TD, Palmer CA, Orlicky DJ, Fischer A, Rudolph MC, Neville MC, et al. Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. J Lipid Res. 2007;48(7):1463–75.

    CAS  PubMed  Google Scholar 

  37. Russell TD, Schaack J, Orlicky DJ, Palmer C, Chang BH, Chan L, et al. Adipophilin regulates maturation of cytoplasmic lipid droplets and alveolae in differentiating mammary glands. J Cell Sci. 2011;124(Pt 19):3247–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mastronarde DN. Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol. 1997;120(3):343–52.

    CAS  PubMed  Google Scholar 

  39. Robenek H, Robenek MJ, Troyer D. PAT family proteins pervade lipid droplet cores. J Lipid Res. 2005;46(6):1331–8.

    CAS  PubMed  Google Scholar 

  40. Pol A, Gross SP, Parton RG. Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol. 2014;204(5):635–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res. 2008;49(11):2283–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang TY, Chang CC, Ohgami N, Yamauchi Y. Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol. 2006;22:129–57.

    CAS  PubMed  Google Scholar 

  43. Greenspan P, Mayer EP, Fowler SD. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 1985;100(3):965–73.

    CAS  PubMed  Google Scholar 

  44. McIntosh R, Nicastro D, Mastronarde D. New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 2005;15(1):43–51.

    CAS  PubMed  Google Scholar 

  45. Salo VT, Ikonen E. Moving out but keeping in touch: contacts between endoplasmic reticulum and lipid droplets. Curr Opin Cell Biol. 2019;57:64–70.

    CAS  PubMed  Google Scholar 

  46. Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci. 2005;118(Pt 12):2601–11.

    CAS  PubMed  Google Scholar 

  47. Ohsaki Y, Cheng J, Suzuki M, Fujita A, Fujimoto T. Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci. 2008;121(Pt 14):2415–22.

    CAS  PubMed  Google Scholar 

  48. Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci. 2011;124(Pt 14):2424–37.

    CAS  PubMed  Google Scholar 

  49. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell. 2013;24(4):384–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Salo VT, Belevich I, Li S, Karhinen L, Vihinen H, Vigouroux C, et al. Seipin regulates ER-lipid droplet contacts and cargo delivery. EMBO J. 2016;35(24):2699–716.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wilfling F, et al. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife. 2014;3:e01607.

    PubMed  PubMed Central  Google Scholar 

  52. Salo VT et al. Seipin facilitates triglyceride flow to lipid droplet and counteracts droplet ripening via endoplasmic reticulum contact. Dev Cell. 2019.

  53. English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol. 2013;5(4):a013227.

    PubMed  PubMed Central  Google Scholar 

  54. El Zowalaty AE, et al. Seipin deficiency leads to increased endoplasmic reticulum stress and apoptosis in mammary gland alveolar epithelial cells during lactation. Biol Reprod. 2018;98(4):570–8.

    PubMed  Google Scholar 

  55. Orlicky DJ, Libby AE, Bales ES, McMahan R, Monks J, la Rosa FG, et al. Perilipin-2 promotes obesity and progressive fatty liver disease in mice through mechanistically distinct hepatocyte and extra-hepatocyte actions. J Physiol. 2019;597(6):1565–84.

    CAS  PubMed  Google Scholar 

  56. Chong BM et al. The adipophilin C-terminus is a self-folding membrane binding domain that is important for milk lipid secretion. J Biol Chem. 2011.

  57. Libby AE, Bales E, Orlicky DJ, McManaman J. Perilipin-2 deletion impairs hepatic lipid accumulation by interfering with sterol regulatory element-binding protein (SREBP) activation and altering the hepatic Lipidome. J Biol Chem. 2016;291(46):24231–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mishra S, Khaddaj R, Cottier S, Stradalova V, Jacob C, Schneiter R. Mature lipid droplets are accessible to ER luminal proteins. J Cell Sci. 2016;129(20):3803–15.

    CAS  PubMed  Google Scholar 

  59. Kassan A, Herms A, Fernández-Vidal A, Bosch M, Schieber NL, Reddy BJ, et al. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J Cell Biol. 2013;203(6):985–1001.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Robert Farese Jr., Harvard School of Public Health for the antibodies against Dgat1 and Dgat2 and Dr. T.Y. Chang of Dartmouth Medical School for the antibodies Acat1. This work was supported by NIH grants PO1GM61306 (KEH); 5PO1HD038129 (KEH); 2PO1HD038129 (JLM); and 2R01HD45965 and R01HD093729 (JLM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. McManaman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladinsky, M.S., Mardones, G.A., Orlicky, D.J. et al. Electron Tomography Revels that Milk Lipids Originate from Endoplasmic Reticulum Domains with Novel Structural Features. J Mammary Gland Biol Neoplasia 24, 293–304 (2019). https://doi.org/10.1007/s10911-019-09438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-019-09438-y

Keywords

Navigation