Skip to main content

Advertisement

Log in

Digital tomosynthesis of the pediatric elbow

  • Musculoskeletal imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Imaging pediatric elbow trauma in the acute setting remains diagnostically challenging given difficult patient positioning, multiple ossification centers of the pediatric elbow, overlapping structures, and complex joint anatomy. Digital tomosynthesis is a technique where the X-ray source travels across a limited arc angle, obtaining a series of low-dose exposures that are in turn digitally reconstructed to produce high in-plane resolution at a relatively low overall radiation dose. Digital tomosynthesis is now more commonly integrated into standard radiographic machines and offers a new and exciting way to assess the pediatric elbow. In this review article we discuss the clinical applications of digital tomosynthesis in pediatric elbow trauma along with challenges related to technique, patient positioning and artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Iyer RS, Thapa MM, Khanna PC, Chew FS (2012) Pediatric bone imaging: imaging elbow trauma in children — a review of acute and chronic injuries. AJR Am J Roentgenol 198:1053–1068

    Article  Google Scholar 

  2. Landin LA (1983) Fracture patterns in children. Analysis of 8,682 fractures with special reference to incidence, etiology and secular changes in a Swedish urban population 1950–1979. Acta Orthop Scand Suppl 202:100–109

    Google Scholar 

  3. Emery KH, Zingula SN, Anton CG et al (2016) Pediatric elbow fractures: a new angle on an old topic. Pediatr Radiol 46:61–66

    Article  Google Scholar 

  4. DeFroda SF, Hansen H, Gil JA et al (2017) Radiographic evaluation of common pediatric elbow injuries. Orthop Rev 9:7030

    Article  Google Scholar 

  5. Cheng JC, Wing-Man K, Shen WY et al (1998) A new look at the sequential development of elbow ossification centers in children. J Pediatr Orthop 18:161–167

    CAS  PubMed  Google Scholar 

  6. Patel B, Reed M, Patel S (2009) Gender-specific pattern differences of the ossification centers in the pediatric elbow. Pediatr Radiol 39:226–231

    Article  Google Scholar 

  7. Donnelly LF, Klostermeier TT, Klosterman LA (1998) Traumatic elbow effusions in pediatric patients: are occult fractures the rule? AJR Am J Roentgenol 171:243–245

    Article  CAS  Google Scholar 

  8. Skaggs DL, Mirzayan R (1999) The posterior fat pad sign in association with occult fracture of the elbow in children. J Bone Joint Surg Am 81:1429–1433

    Article  CAS  Google Scholar 

  9. Major NM, Crawford ST (2002) Elbow effusions in trauma in adults and children: is there an occult fracture? AJR Am J Roentgenol 178:413–418

    Article  Google Scholar 

  10. Al-Aubaidi Z, Torfing T (2012) The role of fat pad sign in diagnosing occult elbow fractures in the pediatric patient: a prospective magnetic resonance imaging study. J Pediatr Orthop B 21:514–519

    Article  Google Scholar 

  11. Lins RE, Simovitch RW, Waters PM (1999) Pediatric elbow trauma. Orthop Clin North Am 30:119–132

    Article  CAS  Google Scholar 

  12. Chapman V, Grottkau B, Albright M et al (2006) MDCT of the elbow in pediatric patients with posttraumatic elbow effusions. AJR Am J Roentgenol 187:812–817

    Article  Google Scholar 

  13. Chapman VM, Grottkau BE, Albright M et al (2005) Multidetector computed tomography of pediatric lateral condylar fractures. J Comput Assist Tomogr 29:842–846

    Article  Google Scholar 

  14. Maravilla KR, Murry RC Jr, Horner S (1983) Digital tomosynthesis: technique for electronic reconstructive tomography. AJR Am J Roentgenol 41:497–502

    Article  Google Scholar 

  15. Compton N, Murphy L, Lyons F et al (2018) Tomosynthesis: a new radiologic technique for rapid diagnosis of scaphoid fractures. Surgeon 16:131–136

    Article  CAS  Google Scholar 

  16. Ottenin MA, Jacquot A, Grospretre O et al (2012) Evaluation of the diagnostic performance of tomosynthesis in fractures of the wrist. AJR Am J Roentgenol 198:180–186

    Article  Google Scholar 

  17. Geijer M, Börjesson AM, Göthlin JH (2011) Clinical utility of tomosynthesis in suspected scaphoid fracture. A pilot study. Skelet Radiol 40:863–867

    Article  Google Scholar 

  18. Nelson F, Bokhari O, Oravec D et al (2017) The use of tomosynthesis in the global study of knee subchondral insufficiency fractures. Acad Radiol 24:175–183

    Article  Google Scholar 

  19. Ha AS, Lee AY, Hippe DS et al (2015) Digital tomosynthesis to evaluate fracture healing: prospective comparison with radiography and CT. AJR Am J Roentgenol 205:136–141

    Article  Google Scholar 

  20. De Silvestro A, Martini K, Becker AS et al (2018) Postoperative imaging of orthopaedic hardware in the hand and wrist: is there an added value for tomosynthesis? Clin Radiol 73:214.e1–214.e9

    Article  Google Scholar 

  21. Dobbins JT, Godfrey DJ (2003) Digital X-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol 48:R65–R106

    Article  Google Scholar 

  22. Gislason A, Elbakri IA, Reed M (2009) Dose assessment of digital tomosynthesis in pediatric imaging. Proc SPIE 7258:72585

    Article  Google Scholar 

  23. Geiser WR, Einstein SA, Yang WT (2018) Artifacts in digital breast Tomosynthesis. AJR Am J Roentgenol 21:926–932

    Article  Google Scholar 

  24. Tirada N, Li G, Dreizin D et al (2019) Digital breast tomosynthesis: physics, artifacts, and quality control considerations. Radiographics 39:413–426

    Article  Google Scholar 

  25. Deller T, Jabri KN, Sabol JM et al (2007) Effect of acquisition parameters on image quality in digital tomosynthesis. Proc SPIE 6510:650101

    Google Scholar 

  26. Acciavatti RJ, Maidment AD (2012) Optimization of continuous tube motion and step-and-shoot motion in digital breast tomosynthesis systems with patient motion. Phys Med Imaging 8313:831306

    Google Scholar 

  27. Gartland JJ (1959) Management of supracondylar fractures of the humerus in children. Surg Gynecol Obstet 109:145–154

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Zapala.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapala, M.A., Livingston, K., Phelps, A.S. et al. Digital tomosynthesis of the pediatric elbow. Pediatr Radiol 49, 1643–1651 (2019). https://doi.org/10.1007/s00247-019-04444-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-019-04444-y

Keywords

Navigation