Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evidence of oxidative stress and mitochondrial dysfunctions in the testis of prepubertal diabetic rats

Abstract

Earlier, we have shown the occurrence of oxidative impairments and their progression in the testis of diabetic adult rats. This study investigated the vulnerability of immature testis to oxidative stress and mitochondrial dysfunctions in a prepubertal (PP) diabetic rat model. PP male rats (4/6-week-old) rendered diabetic by an acute dose of streptozotocin were monitored for induction of oxidative stress in testis cytosol/mitochondria. Diabetic rats of both age groups showed severe hyperglycemia, testicular atrophy and marked oxidative damage as evidenced by enhanced generation of reactive oxygen species, hydroperoxide and malondialdehyde levels (4 week>6 week). Mitochondrial dysfunctions manifested as reduction in the activities of aldehyde dehydrogenase, tricarboxylic acid cycle enzymes, enhanced activities of oxidative phosphorylation enzymes, perturbations in calcium homeostasis and membrane potential. These evidences suggest that an immature testis is vulnerable to oxidative stress under diabetes, which may play a significant role in the development of testicular degeneration, leading to impaired fertility in adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Zimmet P, Alberti KGMM, Shaw J . Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782–787.

    Article  CAS  Google Scholar 

  2. Robertson RP, Harmon JS . Diabetes, glucose toxicity, and oxidative stress: a case of double jeopardy for the pancreatic islet β cell. Free Radic Biol Med 2006; 41: 177–184.

    Article  CAS  Google Scholar 

  3. Varvarovska J, Racek J, Stozicky F, Soucek J, Trefil L, Pomahacova R . Parameters of oxidative stress in children with type1 diabetes mellitus and their relatives. J Diabetes Complications 2003; 17: 7–10.

    Article  Google Scholar 

  4. Pinhas-Hamiel O, Zeitler P . The global spread of type2 diabetes mellitus in children and adolescents. J Pediatr 2005; 146: 693–700.

    Article  Google Scholar 

  5. Lenzen S . The mechanism of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008; 51: 216–226.

    Article  CAS  Google Scholar 

  6. Paz G, Homonnai ZT . Leydig cell function in streptozotocin-induced diabetic rats. Experentia 1979; 35: 1412–1413.

    Article  CAS  Google Scholar 

  7. Sexton WJ, Jarrow JP . Effect of diabetes mellitus upon male reproductive function. Urology 1997; 49: 508–513.

    Article  CAS  Google Scholar 

  8. Scarano WR, Messias AG, Oliva SU, Klinefelter GR, Kempinas WG . Sexual behaviour, sperm quality after short term streptozotocin induced hyperglycemia in rats. Int J Androl 2006; 29: 482–488.

    Article  CAS  Google Scholar 

  9. Agarwal A, Said TM . Oxidative stress, DNA damage and apoptosis in male fertility: a clinical approach. BJU Int 2005; 95: 503–507.

    Article  CAS  Google Scholar 

  10. Shrilatha B, Muralidhara . Occurrence of oxidative impairments, response of antioxidant defenses and associated biochemical perturbations in male reproductive milieu in streptozotocin diabetic rats. Int J Androl 2007a; 30: 508–518.

    Article  CAS  Google Scholar 

  11. Shrilatha B, Muralidhara . Early oxidative stress and epididymal sperm in streptozotocin induced diabetic mice: its progression and genotoxic consequences. Reprod Toxicol 2007b; 23: 578–587.

    Article  CAS  Google Scholar 

  12. Vaithinathan S, Saradha B, D’Cruz SC, Mathur PP . Apoptosis in testis: the hostile role of environmental toxicants. In: Sharma RS, Rajanna A, Rajalakshmi M (eds). Recent Advances and Challenges in Reproductive Health Research. Indian Council of Medical Research: New Delhi, 2008, pp 379–391.

    Google Scholar 

  13. Bauche F, Fouchard MH, Jegou B . Antioxidant system in rat testicular cells. FEBS Lett 1994; 349: 392–396.

    Article  CAS  Google Scholar 

  14. Samanta L, Roy A, Chainy GB . Changes in rat testicular defence profile as a function of age and its impairment by hexachlorocyclohexane during critical stages of maturation. Andrologia 1999; 31: 83–90.

    Article  CAS  Google Scholar 

  15. Thyagaraju BM, Muralidhara . Vulnerability of prepubertal mice testis to iron induced oxidative dysfunctions in vivo and functional implications. Int J Fertil Steril 2008; 4: 147–156.

    Google Scholar 

  16. Trounce IA, Kim YL, Jun AS, Wallace DC . Assessment of mitochondrial oxidative phosphorylation in patient with muscle biopsies, lymphoblasts and transmitochondrial cell lines. Methods Enzymol 1996; 264: 484–509.

    Article  CAS  Google Scholar 

  17. Chandrashekar KN, Muralidhara . Oxidative alterations induced by D-aspartic acid in prepubertal rat testis in vitro; a mechanistic study. Theriogenology 2008; 70: 97–104.

    Article  CAS  Google Scholar 

  18. Wolf SP . Ferrous iron oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 1994; 233: 182–189.

    Article  Google Scholar 

  19. Ohakawa H, Ohishi U, Yagi K . Assay of lipid peroxides in animal tissues by thiobarbituric reaction. Anal Biochem 1979; 95: 145–149.

    Google Scholar 

  20. Levine RL, Garland D, Oliver C, Amici A, Climent I, Lenz A et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990; 186: 464–478.

    Article  CAS  Google Scholar 

  21. Hissin PJ, Hilf R . A fluorimetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 1976; 74: 214–216.

    Article  CAS  Google Scholar 

  22. Ellman GL . Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82: 70–77.

    Article  CAS  Google Scholar 

  23. Omaye ST, Turnball JD, Sauberlich HE . Selected method for determination of ascorbic acid in animal cells, tissues and fluids. Methods Enzymol 1971; 62: 1–11.

    Google Scholar 

  24. Aebi H . Catalase in vitro. Methods Enzymol 1984; 105: 121–125.

    Article  CAS  Google Scholar 

  25. Vladimir A, Kostyuk VA, Potapovich AI . Superoxide driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochem Int 1989; 19: 1117–1124.

    Google Scholar 

  26. Flohe L, Gunzler WA . Assays of glutathione peroxidase. Methods Enzymol 1984; 105: 114–121.

    Article  CAS  Google Scholar 

  27. Guthenberg C, Alin P, Mannervik B . Glutathione transferase from rat testis. Methods Enzymol 1985; 113: 507–510.

    Article  CAS  Google Scholar 

  28. Carlberg I, Mannervick FT, Dryle DD . Glutathione reductase. Methods Enzymol 1985; 489–490.

  29. Canuto RA, Garcea R, Pascale M, Pirisi L, Feo F . The subcellular distribution and properties of aldehyde dehydrogenase of heptoma AH-120. Eur J Cancer Clin Oncol 1983; 19: 389–400.

    Article  CAS  Google Scholar 

  30. Geralch U . Sorbitol dehydrogenase. In: Bergmeyer HU (ed). Methods of enzymatic analysis. Academic Press: New York, 1963, pp 761–764.

    Google Scholar 

  31. Goldberg E, Hawtrey C . The ontogeny of sperm specific lactate dehydrogenase in mice. J Exp Zool 1967; 164: 309–316.

    Article  CAS  Google Scholar 

  32. Luthman M, Holmgern A . Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochem J 1982; 21: 6628–6633.

    Article  CAS  Google Scholar 

  33. Qujeq D . Development of a quantitative assay method for 3-beta hydroxysteroid dehydrogenase in rat testis. Steroids 2002; 67: 1071–1077.

    Article  CAS  Google Scholar 

  34. Srere PA . Citrate Synthase. Methods Enzymol 1969; 13: 3–26.

    Article  CAS  Google Scholar 

  35. Penington R . Biochemistry of dystrophic muscle. Mitochondrial succinate tetrazolium reductase and adenosine triphosphatease. Biochem J 1961; 80: 649–654.

    Article  Google Scholar 

  36. Navarro A, Gomez C, Lopez-Cepero JA, Boveris A . Beneficial effects of moderate exercise on mice aging: survival, behavior: oxidative stress and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 2004; 286: 505–511.

    Article  Google Scholar 

  37. Navarro A, Sanchez Del Pino MJ, Gomez C, Peralta JL, Boveris A . Behavioural dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integr Comp Physiol 2002; 282: 985–992.

    Article  Google Scholar 

  38. Andersson BS, Aw TY, Jones DP . Mitochondrial transmembrane potential and pH gradient during anoxia. Am J Physiol 1987; 252: 349–355.

    Article  Google Scholar 

  39. Rigobello MP, Folda A, Scutari G, Bindoli A . The modulation of thiol redox state affects the production and metabolism of hydrogen peroxide by heart mitochondria. Arch Biochem Biophys 2005; 441: 112–122.

    Article  CAS  Google Scholar 

  40. Hitoshi A, Satoh T, Sakai N, Yamada M, Enokido Y, Ikeuchi T et al. Generation of free radicals during lipid peroxide triggered apoptosis in PC12h cells. Biochim Biophys Acta 1997; 1345: 35–42.

    Article  Google Scholar 

  41. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ . Protein measurement using folin-phenol reagent. J Biol Chem 1951; 193: 265–275.

    CAS  Google Scholar 

  42. Spear LP . Assessment of adolescent neurotoxicity: rationale and methodological considerations. Neurotoxicol Teratol 2007; 20: 1–9.

    Article  Google Scholar 

  43. Kume E, Fuijimura H, Matsuki N, Ito M, Aruga C, Toriumi W et al. Hepatic changes in the acute phase of streptozotocin (STZ)-induced diabetes in mice. Exp Toxicol Pathol 2004; 55: 467–480.

    Article  Google Scholar 

  44. Sun J, Devish K, Langer WJ, Carmines PK, Lane PH . Testosterone treatment promotes tubular damage in experimental diabetes in prepubertal rats. Am J Physiol Renal Physiol 2007; 292: 1681–1690.

    Article  Google Scholar 

  45. Roselli M, Keller PJ, Dubey RK . Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update 1998; 4: 3–24.

    Article  Google Scholar 

  46. Imaeda A, Kaneko T, Aoki T, Kondo Y, Nagase H . DNA damage and the effect of antioxidants in streptozotocin treated mice. Food Chem Toxicol 2002; 40: 979–987.

    Article  CAS  Google Scholar 

  47. Kobayashi T, Kaneko T, Luchi Y, Matsuki S, Takahashi M, Sasagawa I et al. Localization and physiological implication of aldose reductase and sorbitol dehydrogenase in reproductive tracts and spermatozoa of male rats. J Androl 2002; 23: 674–683.

    CAS  PubMed  Google Scholar 

  48. Kostic TS, Andric SA, Maric D, Kovacevic RZ . Inhibitory effects of stress activated nitric oxide on antioxidant enzymes and testicular steroidogenesis. J Steroid Biochem Mol Biol 2000; 75: 299–306.

    Article  CAS  Google Scholar 

  49. Narayana K . A purine nucleoside analogue-acyclovir {9-(2-hydroxyethoxymethyl)-9h-guanine} reversibly impairs testicular functions in mouse. J Toxicol Sci 2008; 33: 61–70.

    Article  CAS  Google Scholar 

  50. Maechler P, Wolheim CM . Mitochondrial function in normal and diabetic β-cells. Nature 2001; 414: 807–812.

    Article  CAS  Google Scholar 

  51. Yarian CS, Toroser D, Sohal RS . Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mech Ageing Dev 2006; 127: 79–84.

    Article  CAS  Google Scholar 

  52. Moon KH, Kim BJ, Song BJ . Inhibition of mitochondrial aldehyde dehydrogenase by NO-mediated-S-nitrosylation. FEBS lett 2005; 579: 6115–6120.

    Article  CAS  Google Scholar 

  53. Vyssokikh MY, Brdiczka D . The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim Pol 2003; 50: 389–404.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Department of Science and Technology (DST) New Delhi, Government of India (DST-SR/SO/AS-48), to the senior author. The first author (KNC) gratefully acknowledges the granting agency for the financial assistance in the form of a Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muralidhara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrashekar, K., Muralidhara Evidence of oxidative stress and mitochondrial dysfunctions in the testis of prepubertal diabetic rats. Int J Impot Res 21, 198–206 (2009). https://doi.org/10.1038/ijir.2009.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijir.2009.9

Keywords

This article is cited by

Search

Quick links