Skip to main content

Advertisement

Log in

Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and Their Functional Characteristics

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Human adult mesenchymal stem or stromal cells (h-MSC) therapy has gained considerable attention due to the potential to treat or cure diseases given their immunosuppressive properties and tissue regeneration capabilities. Researchers have explored diverse strategies to promote high h-MSC production without losing functional characteristics or properties. Physical stimulus including stiffness, geometry, and topography, chemical stimulus, like varying the surface chemistry, and biochemical stimuli such as cytokines, hormones, small molecules, and herbal extracts have been studied but have yet to be translated to industrial manufacturing practice. In this review, we describe the role of those stimuli on h-MSC manufacturing, and how these stimuli positively promote h-MSC properties, impacting the cell manufacturing field for cell-based therapies. In addition, we discuss other process considerations such as bioreactor design, good manufacturing practice, and the importance of the cell donor and ethics factors for manufacturing potent h-MSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Aggarwal, S., and M. F. Pittenger. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822, 2005.

    CAS  PubMed  Google Scholar 

  2. Ahn, H.-J., W.-J. Lee, K. Kwack, and Y. D. Kwon. FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling. FEBS Lett. 583:2922–2926, 2009.

    CAS  PubMed  Google Scholar 

  3. Anderson, H. J., J. K. Sahoo, R. V. Ulijn, and M. J. Dalby. Mesenchymal stem cell fate: applying biomaterials for control of stem cell behavior. Front. Bioeng. Biotechnol. 4:38, 2016.

    PubMed  PubMed Central  Google Scholar 

  4. Ankrum, J. A., R. G. Dastidar, J. F. Ong, O. Levy, and J. M. Karp. Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids. Sci. Rep. 4:4645, 2014.

    PubMed  PubMed Central  Google Scholar 

  5. Badenes, S. M., T. G. Fernandes, C. A. V. Rodrigues, M. M. Diogo, and J. M. S. Cabral. Microcarrier-based platforms for in vitro expansion and differentiation of human pluripotent stem cells in bioreactor culture systems. J. Biotechnol. 234:71–82, 2016.

    CAS  PubMed  Google Scholar 

  6. Baker, B. M., B. Trappmann, W. Y. Wang, M. S. Sakar, I. L. Kim, V. B. Shenoy, J. A. Burdick, and C. S. Chen. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14:1262–1268, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Baxter, M. A., R. F. Wynn, S. N. Jowitt, J. E. Wraith, L. J. Fairbairn, and I. Bellantuono. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22:675–682, 2004.

    CAS  PubMed  Google Scholar 

  8. Bieback, K., A. Hecker, A. Kocaömer, H. Lannert, K. Schallmoser, D. Strunk, and H. Klüter. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 27:2331–2341, 2009.

    CAS  PubMed  Google Scholar 

  9. Bigildeev, A. E., E. A. Zezina, I. N. Shipounova, and N. J. Drize. Interleukin-1 beta enhances human multipotent mesenchymal stromal cell proliferative potential and their ability to maintain hematopoietic precursor cells. Cytokine 71:246–254, 2015.

    CAS  PubMed  Google Scholar 

  10. Borsellino, N., M. Crescimanno, C. Flandina, V. Leonardi, L. Rausa, and N. D’Alessandro. Antiproliferative and chemomodulatory effects of interferon-gamma on doxorubicin-sensitive and -resistant tumor cell lines. Anticancer Drugs 4:265–272, 1993.

    CAS  PubMed  Google Scholar 

  11. Bredenoord, A. L., H. Clevers, and J. A. Knoblich. Human tissues in a dish: the research and ethical implications of organoid technology. Science 355:eaaf9414, 2017.

    PubMed  Google Scholar 

  12. Bronner, F., and M. C. Farach-Carson. Bone Formation. Berlin: Springer, 2004.

    Google Scholar 

  13. Bruder, S. P., N. Jaiswal, and S. E. Haynesworth. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 64:278–294, 1997.

    CAS  PubMed  Google Scholar 

  14. Burand, A. J., O. W. Gramlich, A. J. Brown, and J. A. Ankrum. Function of cryopreserved mesenchymal stromal cells with and without interferon-γ prelicensing is context dependent. Stem Cells 35:1437–1439, 2017.

    CAS  PubMed  Google Scholar 

  15. Castilla-Casadiego, D. A., J. R. García, A. J. García, and J. Almodovar. Heparin/collagen coatings improve human mesenchymal stromal cell response to interferon gamma. ACS Biomater. Sci. Eng. 5:2793–2803, 2019.

    CAS  PubMed  Google Scholar 

  16. Chabay, R. W., and B. A. Sherwood. Matter and Interactions (4th ed.). New York: Wiley Global Education, 2015.

    Google Scholar 

  17. Chase, L. G., U. Lakshmipathy, L. A. Solchaga, M. S. Rao, and M. C. Vemuri. A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res. Ther. 1:8, 2010.

    PubMed  PubMed Central  Google Scholar 

  18. Chen, A. K.-L., Y. K. Chew, H. Y. Tan, S. Reuveny, and S. K. W. Oh. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed. Cytotherapy 17:163–173, 2015.

    PubMed  Google Scholar 

  19. Chinnadurai, R., D. Rajan, M. Qayed, D. Arafat, M. Garcia, Y. Liu, S. Kugathasan, L. J. Anderson, G. Gibson, and J. Galipeau. Potency analysis of mesenchymal stromal cells using a combinatorial assay matrix approach. Cell Rep. 22:2504–2517, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi, J. H., S. Y. Lyu, H. J. Lee, J. Jung, W. B. Park, and G. J. Kim. Korean mistletoe lectin regulates self-renewal of placenta-derived mesenchymal stem cells via autophagic mechanisms. Cell Prolif. 45:420–429, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Collins, J. M., P. H. Goldspink, and B. Russell. Migration and proliferation of human mesenchymal stem cells is stimulated by different regions of the mechano-growth factor prohormone. J. Mol. Cell. Cardiol. 49:1042–1045, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cooper, K., A. SenMajumdar, and C. Viswanathan. Derivation, expansion and characterization of clinical grade mesenchymal stem cells from umbilical cord matrix using cord blood serum. Int. J. Stem. Cells 3:119–128, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cooper, K., and C. Viswanathan. Establishment of a mesenchymal stem cell bank. Stem Cells Int. 2011:905621, 2011.

    PubMed  PubMed Central  Google Scholar 

  24. Cote, D. J., A. L. Bredenoord, T. R. Smith, M. Ammirati, J. Brennum, I. Mendez, A. S. Ammar, N. Balak, G. Bolles, I. N. Esene, T. Mathiesen, and M. L. Broekman. Ethical clinical translation of stem cell interventions for neurologic disease. Neurology 88:322–328, 2017.

    PubMed  Google Scholar 

  25. Croitoru-Lamoury, J., F. M. J. Lamoury, M. Caristo, K. Suzuki, D. Walker, O. Takikawa, R. Taylor, and B. J. Brew. Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS ONE 6:e14698, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Curran, J. M., R. Chen, and J. A. Hunt. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials 26:7057–7067, 2005.

    CAS  PubMed  Google Scholar 

  27. Curran, J. M., R. Chen, and J. A. Hunt. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 27:4783–4793, 2006.

    CAS  PubMed  Google Scholar 

  28. Curran, J. M., R. Stokes, E. Irvine, D. Graham, N. A. Amro, R. G. Sanedrin, H. Jamil, and J. A. Hunt. Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine. Lab Chip 10:1662–1670, 2010.

    CAS  PubMed  Google Scholar 

  29. D’Ippolito, G., P. C. Schiller, C. Ricordi, B. A. Roos, and G. A. Howard. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J. Bone Miner. Res. 14:1115–1122, 1999.

    PubMed  Google Scholar 

  30. Discher, D. E., D. J. Mooney, and P. W. Zandstra. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dolley-Sonneville, P. J., L. E. Romeo, and Z. K. Melkoumian. Synthetic surface for expansion of human mesenchymal stem cells in xeno-free, chemically defined culture conditions. PLoS ONE 8:e70263, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dombrowski, C., T. Helledie, L. Ling, M. Grünert, C. A. Canning, C. Michael Jones, J. H. Hui, V. Nurcombe, A. J. van Wijnen, and S. M. Cool. FGFR1 signaling stimulates proliferation of human mesenchymal stem cells by inhibiting the cyclin-dependent kinase inhibitors p21Waf1and p27Kip1. Stem Cells 31:2724–2736, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dufey, V., A. Tacheny, M. Art, U. Becken, and F. De Longueville. Expansion of human bone marrow-derived mesenchymal stem cells in BioBLU 0.3 c single-use bioreactors. Appl. Note 305:1–8, 2016.

    Google Scholar 

  34. Egea, V., L. von Baumgarten, C. Schichor, B. Berninger, T. Popp, P. Neth, R. Goldbrunner, Y. Kienast, F. Winkler, M. Jochum, and C. Ries. TNF-α respecifies human mesenchymal stem cells to a neural fate and promotes migration toward experimental glioma. Cell Death Differ. 18:853–863, 2011.

    CAS  PubMed  Google Scholar 

  35. Eibes, G., F. dos Santos, P. Z. Andrade, J. S. Boura, M. M. A. Abecasis, C. L. da Silva, and J. M. S. Cabral. Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. J. Biotechnol. 146:194–197, 2010.

    CAS  PubMed  Google Scholar 

  36. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    CAS  PubMed  Google Scholar 

  37. Fan, W., R. Crawford, and Y. Xiao. The ratio of VEGF/PEDF expression in bone marrow mesenchymal stem cells regulates neovascularization. Differentiation 81:181–191, 2011.

    CAS  PubMed  Google Scholar 

  38. Fiedler, J., F. Leucht, J. Waltenberger, C. Dehio, and R. E. Brenner. VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochem. Biophys. Res. Commun. 334:561–568, 2005.

    CAS  PubMed  Google Scholar 

  39. Frank, N. D., M. E. Jones, B. Vang, and C. Coeshott. Evaluation of reagents used to coat the hollow-fiber bioreactor membrane of the Quantum® Cell Expansion System for the culture of human mesenchymal stem cells. Mater. Sci. Eng. C Mater. Biol. Appl. 96:77–85, 2019.

    CAS  PubMed  Google Scholar 

  40. Gilbert, P. M., K. L. Havenstrite, K. E. G. Magnusson, A. Sacco, N. A. Leonardi, P. Kraft, N. K. Nguyen, S. Thrun, M. P. Lutolf, and H. M. Blau. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Goedhart, M., A. S. Cornelissen, C. Kuijk, S. Geerman, M. Kleijer, J. D. van Buul, S. Huveneers, M. H. G. P. Raaijmakers, H. A. Young, M. C. Wolkers, C. Voermans, and M. A. Nolte. Interferon-gamma impairs maintenance and alters hematopoietic support of bone marrow mesenchymal stromal cells. Stem Cells Dev. 27:579–589, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Guilak, F., D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hanley, P. J., Z. Mei, A. G. Durett, M. da Graca Cabreira-Hansen, M. Klis, W. Li, Y. Zhao, B. Yang, K. Parsha, O. Mir, F. Vahidy, D. Bloom, R. B. Rice, P. Hematti, S. I. Savitz, and A. P. Gee. Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion System. Cytotherapy 16:1048–1058, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Heathman, T. R. J., A. W. Nienow, M. J. McCall, K. Coopman, B. Kara, and C. J. Hewitt. The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regener. Med. 10:49–64, 2015.

    CAS  Google Scholar 

  45. Heathman, T. R. J., A. Stolzing, C. Fabian, Q. A. Rafiq, K. Coopman, A. W. Nienow, B. Kara, and C. J. Hewitt. Scalability and process transfer of mesenchymal stromal cell production from monolayer to microcarrier culture using human platelet lysate. Cytotherapy 18:523–535, 2016.

    CAS  PubMed  Google Scholar 

  46. Heo, S.-J., N. L. Nerurkar, B. M. Baker, J.-W. Shin, D. M. Elliott, and R. L. Mauck. Fiber stretch and reorientation modulates mesenchymal stem cell morphology and fibrous gene expression on oriented nanofibrous microenvironments. Ann. Biomed. Eng. 39:2780–2790, 2011.

    PubMed  PubMed Central  Google Scholar 

  47. Heo, S.-J., S. E. Szczesny, D. H. Kim, K. S. Saleh, and R. L. Mauck. Expansion of mesenchymal stem cells on electrospun scaffolds maintains stemness, mechano-responsivity, and differentiation potential. J. Orthop. Res. 36:808–815, 2018.

    CAS  PubMed  Google Scholar 

  48. Ho, S. S., N. L. Vollmer, M. I. Refaat, O. Jeon, E. Alsberg, M. A. Lee, and J. Kent Leach. Bone morphogenetic protein-2 promotes human mesenchymal stem cell survival and resultant bone formation when entrapped in photocrosslinked alginate hydrogels. Adv. Healthc. Mater. 5:2501–2509, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoffman, M. D., M. Takahata, and D. S. M. Benoit. 6-Bromoindirubin-3′-oxime (BIO) induces proliferation of human mesenchymal stem cells (hMSCs). In: 2011 IEEE 37th Annual Northeast Bioengineering Conference (NEBEC), 2011.

  50. Huang, H., H. J. Kim, E.-J. Chang, Z. H. Lee, S. J. Hwang, H.-M. Kim, Y. Lee, and H.-H. Kim. IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling. Cell Death Differ. 16:1332–1343, 2009.

    CAS  PubMed  Google Scholar 

  51. Ijzermans, J. N. M., and R. L. Marquet. Interferon-gamma: a Review. Immunobiology 179:456–473, 1989.

    CAS  PubMed  Google Scholar 

  52. Ingber, D. E. Mechanical control of tissue growth: function follows form. Proc Natl Acad Sci USA 102:11571–11572, 2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ito, T., R. Sawada, Y. Fujiwara, Y. Seyama, and T. Tsuchiya. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-β2. Biochem. Biophys. Res. Commun 359:108–114, 2007.

    CAS  PubMed  Google Scholar 

  54. Ito, T., R. Sawada, Y. Fujiwara, and T. Tsuchiya. FGF-2 increases osteogenic and chondrogenic differentiation potentials of human mesenchymal stem cells by inactivation of TGF-beta signaling. Cytotechnology 56:1–7, 2008.

    CAS  PubMed  Google Scholar 

  55. Jiang, C. M., J. Liu, J. Y. Zhao, L. Xiao, S. An, Y. C. Gou, H. X. Quan, Q. Cheng, Y. L. Zhang, W. He, Y. T. Wang, W. J. Yu, Y. F. Huang, Y. T. Yi, Y. Chen, and J. Wang. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells. J. Dent. Res. 94:69–77, 2015.

    CAS  PubMed  Google Scholar 

  56. Jing, D., N. Sunil, S. Punreddy, M. Aysola, D. Kehoe, J. Murrel, M. Rook, and K. Niss. Growth kinetics of human mesenchymal stem cells in a 3-L single-use, stirred-tank bioreactor. BioPharm Int. 26:28–38, 2013.

    CAS  Google Scholar 

  57. Jones, M., M. Varella-Garcia, M. Skokan, S. Bryce, J. Schowinsky, R. Peters, B. Vang, M. Brecheisen, T. Startz, N. Frank, and B. Nankervis. Genetic stability of bone marrow-derived human mesenchymal stromal cells in the Quantum System. Cytotherapy 15:1323–1339, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jossen, V., R. Pörtner, S. C. Kaiser, M. Kraume, D. Eibl, and R. Eibl. Mass production of mesenchymal stem cells—impact of bioreactor design and flow conditions on proliferation and differentiation. Cells Biomater. Regener. Med. 2014. https://doi.org/10.5772/59385.

    Article  Google Scholar 

  59. Jossen, V., C. van den Bos, R. Eibl, and D. Eibl. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl. Microbiol. Biotechnol. 102:3981–3994, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jung, S., A. Sen, L. Rosenberg, and L. A. Behie. Identification of growth and attachment factors for the serum-free isolation and expansion of human mesenchymal stromal cells. Cytotherapy 12:637–657, 2010.

    CAS  PubMed  Google Scholar 

  61. Kehoe, D., A. Schnitzler, J. Simler, A. DiLeo, and A. Ball. Scale-up of human mesenchymal stem cells on microcarriers in suspension in a single-use bioreactor. BioPharm Int. 25:28–38, 2012.

    CAS  Google Scholar 

  62. Kim, D. S., I. K. Jang, M. W. Lee, Y. J. Ko, D.-H. Lee, J. W. Lee, K. W. Sung, H. H. Koo, and K. H. Yoo. Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-γ. EBioMedicine 28:261–273, 2018.

    PubMed  PubMed Central  Google Scholar 

  63. Klinker, M. W., R. A. Marklein, J. L. Lo Surdo, C.-H. Wei, and S. R. Bauer. Morphological features of IFN-γ–stimulated mesenchymal stromal cells predict overall immunosuppressive capacity. Proc Natl Acad Sci 114:E2598–E2607, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kocaoemer, A., S. Kern, H. Klüter, and K. Bieback. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25:1270–1278, 2007.

    CAS  PubMed  Google Scholar 

  65. Kureel, S. K., P. Mogha, A. Khadpekar, V. Kumar, R. Joshi, S. Das, J. Bellare, and A. Majumder. Soft substrate maintains proliferative and adipogenic differentiation potential of human mesenchymal stem cells on long-term expansion by delaying senescence. Biology Open 8:bio039453, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lawson, T., D. E. Kehoe, A. C. Schnitzler, P. J. Rapiejko, K. A. Der, K. Philbrick, S. Punreddy, S. Rigby, R. Smith, Q. Feng, J. R. Murrell, and M. S. Rook. Process development for expansion of human mesenchymal stromal cells in a 50 L single-use stirred tank bioreactor. Biochem. Eng. J. 120:49–62, 2017.

    CAS  Google Scholar 

  67. Lechanteur, C. Large-scale clinical expansion of mesenchymal stem cells in the GMP-compliant, closed automated quantum® cell expansion system: comparison with expansion in traditional T-flasks. Int. J. Stem Cell Res. Ther. 4:1000222, 2014.

    Google Scholar 

  68. Lechanteur, C., A. Briquet, O. Giet, O. Delloye, E. Baudoux, and Y. Beguin. Clinical-scale expansion of mesenchymal stromal cells: a large banking experience. J. Transl. Med. 14:145, 2016.

    PubMed  PubMed Central  Google Scholar 

  69. Lee, J., A. A. Abdeen, A. S. Kim, and K. A. Kilian. Influence of biophysical parameters on maintaining the mesenchymal stem cell phenotype. ACS Biomater. Sci. Eng. 1:218–226, 2015.

    CAS  PubMed  Google Scholar 

  70. Li, W.-J., C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60:613–621, 2002.

    CAS  PubMed  Google Scholar 

  71. Li, C. X., N. P. Talele, S. Boo, A. Koehler, E. Knee-Walden, J. L. Balestrini, P. Speight, A. Kapus, and B. Hinz. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat. Mater. 16:379–389, 2017.

    CAS  PubMed  Google Scholar 

  72. Litwack, G. Stem Cell Regulators. New York: Academic Press, 2011.

    Google Scholar 

  73. Maher, S., A. Romero-Weaver, A. Scarzello, and A. Gamero. Interferon: cellular executioner or white knight? Curr. Med. Chem. 14:1279–1289, 2007.

    CAS  PubMed  Google Scholar 

  74. Malik, N. N., and M. B. Durdy. Cell therapy landscape. Transl. Regener. Med. 2015:87–106, 2015.

    Google Scholar 

  75. Mao, A. S., J.-W. Shin, and D. J. Mooney. Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation. Biomaterials 98:184–191, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Mareschi, K., I. Ferrero, D. Rustichelli, S. Aschero, L. Gammaitoni, M. Aglietta, E. Madon, and F. Fagioli. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J. Cell. Biochem. 97:744–754, 2006.

    CAS  PubMed  Google Scholar 

  77. Marks, P., and S. Gottlieb. Balancing safety and innovation for cell-based regenerative medicine. N. Engl. J. Med. 378:954–959, 2018.

    PubMed  Google Scholar 

  78. Martin-Manso, G., and P. J. Hanley. Using the quantum cell expansion system for the automated expansion of clinical-grade bone marrow-derived human mesenchymal stromal cells. Methods Mol. Biol. 1283:53–63, 2015.

    CAS  PubMed  Google Scholar 

  79. McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.

    CAS  PubMed  Google Scholar 

  80. McLeod, C. M., and R. L. Mauck. On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis. Eur. Cell. Mater. 34:217–231, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. McMurray, R. J., N. Gadegaard, P. M. Tsimbouri, K. V. Burgess, L. E. McNamara, R. Tare, K. Murawski, E. Kingham, R. O. C. Oreffo, and M. J. Dalby. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat. Mater. 10:637–644, 2011.

    CAS  PubMed  Google Scholar 

  82. Mindaye, S. T., J. Lo Surdo, S. R. Bauer, and M. A. Alterman. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: effect of in vitro passaging. Data Brief 5:864–870, 2015.

    PubMed  PubMed Central  Google Scholar 

  83. Mindaye, S. T., M. Ra, J. L. Lo Surdo, S. R. Bauer, and M. A. Alterman. Global proteomic signature of undifferentiated human bone marrow stromal cells: evidence for donor-to-donor proteome heterogeneity. Stem Cell Res. 11:793–805, 2013.

    CAS  PubMed  Google Scholar 

  84. Mizukami, A., M. S. de Abreu Neto, F. Moreira, A. Fernandes-Platzgummer, Y.-F. Huang, W. Milligan, J. M. S. Cabral, C. L. da Silva, D. T. Covas, and K. Swiech. A fully-closed and automated hollow fiber bioreactor for clinical-grade manufacturing of human mesenchymal stem/stromal cells. Stem Cell Rev. 14:141–143, 2018.

    CAS  Google Scholar 

  85. Mizukami, A., T. D. Pereira Chilima, M. D. Orellana, M. A. Neto, D. T. Covas, S. S. Farid, and K. Swiech. Technologies for large-scale umbilical cord-derived MSC expansion: experimental performance and cost of goods analysis. Biochem. Eng. J. 135:36–48, 2018.

    Google Scholar 

  86. Müller, I., S. Kordowich, C. Holzwarth, C. Spano, G. Isensee, A. Staiber, S. Viebahn, F. Gieseke, H. Langer, M. P. Gawaz, E. M. Horwitz, P. Conte, R. Handgretinger, and M. Dominici. Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 8:437–444, 2006.

    PubMed  Google Scholar 

  87. Ng, F., S. Boucher, S. Koh, K. S. R. Sastry, L. Chase, U. Lakshmipathy, C. Choong, Z. Yang, M. C. Vemuri, M. S. Rao, and V. Tanavde. PDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112:295–307, 2008.

    CAS  PubMed  Google Scholar 

  88. Oh, S., K. S. Brammer, Y. S. J. Li, D. Teng, A. J. Engler, S. Chien, and S. Jin. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA 106:2130–2135, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Oikonomopoulos, A., W. K. van Deen, A.-R. Manansala, P. N. Lacey, T. A. Tomakili, A. Ziman, and D. W. Hommes. Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Sci. Rep. 5:16570, 2015.

    PubMed  PubMed Central  Google Scholar 

  90. Oka, N., A. Soeda, A. Inagaki, M. Onodera, H. Maruyama, A. Hara, T. Kunisada, H. Mori, and T. Iwama. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. Biochem. Biophys. Res. Commun. 360:553–559, 2007.

    CAS  PubMed  Google Scholar 

  91. Olsen, T. R., K. S. Ng, L. T. Lock, T. Ahsan, and J. A. Rowley. Peak MSC—are we there yet? Front. Med. 5:178, 2018.

    Google Scholar 

  92. Pagnotto, M. R., Z. Wang, J. C. Karpie, M. Ferretti, X. Xiao, and C. R. Chu. Adeno-associated viral gene transfer of transforming growth factor-β1 to human mesenchymal stem cells improves cartilage repair. Gene Ther. 14:804, 2007.

    CAS  PubMed  Google Scholar 

  93. Parandakh, A., A. Anbarlou, M. Tafazzoli-Shadpour, A. Ardeshirylajimi, and M.-M. Khani. Substrate topography interacts with substrate stiffness and culture time to regulate mechanical properties and smooth muscle differentiation of mesenchymal stem cells. Colloids Surf. B Biointerfaces 173:194–201, 2019.

    CAS  PubMed  Google Scholar 

  94. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999.

    CAS  PubMed  Google Scholar 

  95. Ponte, A. L., T. Ribeiro-Fleury, V. Chabot, F. Gouilleux, A. Langonné, O. Hérault, P. Charbord, and J. Domenech. Granulocyte-colony-stimulating factor stimulation of bone marrow mesenchymal stromal cells promotes CD34 cell migration via a matrix metalloproteinase-2-dependent mechanism. Stem Cells Dev 21:3162–3172, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Prasanna, S. J., S. Jyothi Prasanna, D. Gopalakrishnan, S. R. Shankar, and A. B. Vasandan. Pro-inflammatory cytokines, IFNγ and TNFα, influence immune properties of human bone marrow and wharton jelly mesenchymal stem cells differentially. PLoS ONE 5:e9016, 2010.

    PubMed  PubMed Central  Google Scholar 

  97. Quarto, R., D. Thomas, and C. T. Liang. Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif. Tissue Int. 56:123–129, 1995.

    CAS  PubMed  Google Scholar 

  98. Rifas, L. T-cell cytokine induction of BMP-2 regulates human mesenchymal stromal cell differentiation and mineralization. J. Cell. Biochem. 98:706–714, 2006.

    CAS  PubMed  Google Scholar 

  99. Roemeling-van Rhijn, M., F. K. F. Mensah, S. S. Korevaar, M. J. Leijs, G. J. V. M. van Osch, J. N. M. Ijzermans, M. G. H. Betjes, C. C. Baan, W. Weimar, and M. J. Hoogduijn. Effects of hypoxia on the immunomodulatory properties of adipose tissue-derived mesenchymal stem cells. Front. Immunol. 4:203, 2013.

    PubMed  PubMed Central  Google Scholar 

  100. Russell, A. L., R. C. Lefavor, and A. C. Zubair. Characterization and cost-benefit analysis of automated bioreactor-expanded mesenchymal stem cells for clinical applications. Transfusion 58:2374–2382, 2018.

    CAS  PubMed  Google Scholar 

  101. Ryan, J. M., F. Barry, J. M. Murphy, and B. P. Mahon. Interferon-γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin. Exp. Immunol. 149:353–363, 2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Salem, B., S. Miner, N. F. Hensel, M. Battiwalla, K. Keyvanfar, D. F. Stroncek, A. P. Gee, P. J. Hanley, C. M. Bollard, S. Ito, and A. John Barrett. Quantitative activation suppression assay to evaluate human bone marrow—derived mesenchymal stromal cell potency. Cytotherapy 17:1675–1686, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Saparov, A., V. Ogay, T. Nurgozhin, M. Jumabay, and W. C. W. Chen. Preconditioning of human mesenchymal stem cells to enhance their regulation of the immune response. Stem Cells Int. 2016:3924858, 2016.

    PubMed  PubMed Central  Google Scholar 

  104. Schallmoser, K., C. Bartmann, E. Rohde, A. Reinisch, K. Kashofer, E. Stadelmeyer, C. Drexler, G. Lanzer, W. Linkesch, and D. Strunk. Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 47:1436–1446, 2007.

    CAS  PubMed  Google Scholar 

  105. Schallmoser, K., E. Rohde, C. Bartmann, A. C. Obenauf, A. Reinisch, and D. Strunk. Platelet-derived growth factors for GMP-compliant propagation of mesenchymal stromal cells. Biomed. Mater. Eng. 19:271–276, 2009.

    PubMed  Google Scholar 

  106. Schirmaier, C., V. Jossen, S. C. Kaiser, F. Jüngerkes, S. Brill, A. Safavi-Nab, A. Siehoff, C. van den Bos, D. Eibl, and R. Eibl. Scale-up of adipose tissue-derived mesenchymal stem cell production in stirred single-use bioreactors under low-serum conditions. Eng. Life Sci. 14:292–303, 2014.

    CAS  Google Scholar 

  107. Schmidt, A., D. Ladage, T. Schinköthe, U. Klausmann, C. Ulrichs, F.-J. Klinz, K. Brixius, S. Arnhold, B. Desai, U. Mehlhorn, R. H. G. Schwinger, P. Staib, K. Addicks, and W. Bloch. Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells 24:1750–1758, 2006.

    CAS  PubMed  Google Scholar 

  108. Sensebé, L., M. Gadelorge, and S. Fleury-Cappellesso. Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res. Ther. 4:66, 2013.

    PubMed  PubMed Central  Google Scholar 

  109. Shao, Z., X. Zhang, Y. Pi, X. Wang, Z. Jia, J. Zhu, L. Dai, W. Chen, L. Yin, H. Chen, C. Zhou, and Y. Ao. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo. Biomaterials 33:3375–3387, 2012.

    CAS  PubMed  Google Scholar 

  110. Shi, Y., Y. Wang, P. Zhang, and W. Liu. Fibrous scaffolds for tissue engineering Inflammation and Regeneration. Biomaterials 34:023–032, 2014.

    CAS  Google Scholar 

  111. Shu, Z., X. Kang, H. Chen, X. Zhou, J. Purtteman, D. Yadock, S. Heimfeld, and D. Gao. Development of a reliable low-cost controlled cooling rate instrument for the cryopreservation of hematopoietic stem cells. Cytotherapy 12:161–169, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sivanathan, K. N., S. Gronthos, D. Rojas-Canales, B. Thierry, and P. T. Coates. Interferon-gamma modification of mesenchymal stem cells: implications of autologous and allogeneic mesenchymal stem cell therapy in allotransplantation. Stem Cell Rev. 10:351–375, 2014.

    CAS  Google Scholar 

  113. Sobel, M. E., and S. R. Wolman. Ethical considerations in the use of human tissues in research. Cytometry 38:192–193, 1999.

    CAS  PubMed  Google Scholar 

  114. Sotiropoulou, P. A., S. A. Perez, M. Salagianni, C. N. Baxevanis, and M. Papamichail. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471, 2006.

    PubMed  Google Scholar 

  115. Spoliti, M., P. Iudicone, R. Leone, A. De Rosa, F. R. Rossetti, and L. Pierelli. In vitro release and expansion of mesenchymal stem cells by a hyaluronic acid scaffold used in combination with bone marrow. Muscles Ligaments Tendons J. 2:289–294, 2012.

    PubMed  Google Scholar 

  116. Stenderup, K., J. Justesen, C. Clausen, and M. Kassem. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926, 2003.

    PubMed  Google Scholar 

  117. Strojny, C., M. Boyle, A. Bartholomew, P. Sundivakkam, and S. Alapati. Interferon gamma-treated dental pulp stem cells promote human mesenchymal stem cell migration in vitro. J. Endod. 41:1259–1264, 2015.

    PubMed  PubMed Central  Google Scholar 

  118. Studeny, M., F. C. Marini, R. E. Champlin, C. Zompetta, I. J. Fidler, and M. Andreeff. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 62:3603–3608, 2002.

    CAS  PubMed  Google Scholar 

  119. Su, N., P.-L. Gao, K. Wang, J.-Y. Wang, Y. Zhong, and Y. Luo. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction. Biomaterials 141:74–85, 2017.

    CAS  PubMed  Google Scholar 

  120. Talele, N. P., J. Fradette, J. E. Davies, A. Kapus, and B. Hinz. Expression of α-smooth muscle actin determines the fate of mesenchymal stromal cells. Stem Cell Rep. 4:1016–1030, 2015.

    CAS  Google Scholar 

  121. Tavassoli, H., S. N. Alhosseini, A. Tay, P. P. Y. Chan, S. K. W. Oh, and M. E. Warkiani. Large-scale production of stem cells utilizing microcarriers: a biomaterials engineering perspective from academic research to commercialized products. Biomaterials 181:333–346, 2018.

    CAS  PubMed  Google Scholar 

  122. Teramura, Y., and H. Iwata. Cell surface modification with polymers for biomedical studies. Soft Matter 6:1081–1091, 2010.

    CAS  Google Scholar 

  123. Thirumala, S., S. Zvonic, E. Floyd, J. M. Gimble, and R. V. Devireddy. Effect of various freezing parameters on the immediate post-thaw membrane integrity of adipose tissue derived adult stem cells. Biotechnol. Prog. 21:1511–1524, 2005.

    CAS  PubMed  Google Scholar 

  124. Thomas, R. J., A. D. Hope, P. Hourd, M. Baradez, E. A. Miljan, J. D. Sinden, and D. J. Williams. Automated, serum-free production of CTX0E03: a therapeutic clinical grade human neural stem cell line. Biotechnol. Lett. 31:1167–1172, 2009.

    CAS  PubMed  Google Scholar 

  125. Tsutsumi, S., A. Shimazu, K. Miyazaki, H. Pan, C. Koike, E. Yoshida, K. Takagishi, and Y. Kato. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem. Biophys. Res. Commun. 288:413–419, 2001.

    CAS  PubMed  Google Scholar 

  126. Udalamaththa, V. L., C. D. Jayasinghe, and P. V. Udagama. Potential role of herbal remedies in stem cell therapy: proliferation and differentiation of human mesenchymal stromal cells. Stem Cell Res. Ther. 7:110, 2016.

    PubMed  PubMed Central  Google Scholar 

  127. Unger, C., H. Skottman, P. Blomberg, M. S. Dilber, and O. Hovatta. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum. Mol. Genet. 17:R48–R53, 2008.

    CAS  PubMed  Google Scholar 

  128. Valencic, E., E. Piscianz, M. Andolina, A. Ventura, and A. Tommasini. The immunosuppressive effect of Wharton’s jelly stromal cells depends on the timing of their licensing and on lymphocyte activation. Cytotherapy 12:154–160, 2010.

    CAS  PubMed  Google Scholar 

  129. Volarevic, V., B. S. Markovic, M. Gazdic, A. Volarevic, N. Jovicic, N. Arsenijevic, L. Armstrong, V. Djonov, M. Lako, and M. Stojkovic. Ethical and safety issues of stem cell-based therapy. Int. J. Med. Sci. 15:36–45, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wall, L., F. Burke, J. F. Smyth, and F. Balkwill. The anti-proliferative activity of interferon-γ on ovarian cancer: in vitro and in vivo. Gynecol Oncol 88:S149–S151, 2003.

    CAS  PubMed  Google Scholar 

  131. Warrier, S. R., N. Haridas, S. Balasubramanian, A. Jalisatgi, R. Bhonde, and A. Dharmarajan. A synthetic formulation, Dhanwantharam kashaya, delays senescence in stem cells. Cell Prolif. 46:283–290, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wehling, N., G. D. Palmer, C. Pilapil, F. Liu, J. W. Wells, P. E. Müller, C. H. Evans, and R. M. Porter. Interleukin-1β and tumor necrosis factor α inhibit chondrogenesis by human mesenchymal stem cells through NF-κB-dependent pathways. Arthritis Rheum. 60:801–812, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Windrum, P., T. C. M. Morris, M. B. Drake, D. Niederwieser, T. Ruutu, and EBMT Chronic Leukaemia Working Party Complications Subcommittee. Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres. Bone Marrow Transpl. 36:601–603, 2005.

    CAS  Google Scholar 

  134. Wobma, H. M., M. A. Tamargo, S. Goeta, L. M. Brown, R. Duran-Struuck, and G. Vunjak-Novakovic. The influence of hypoxia and IFN-γ on the proteome and metabolome of therapeutic mesenchymal stem cells. Biomaterials 167:226–234, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang, C., M. W. Tibbitt, L. Basta, and K. S. Anseth. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13:645–652, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60:24–34, 2005.

    Google Scholar 

  137. Yim, E. K. F., and M. P. Sheetz. Force-dependent cell signaling in stem cell differentiation. Stem Cell Res. Ther. 3:41, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yun, S. P., M. Y. Lee, J. M. Ryu, C. H. Song, and H. J. Han. Role of HIF-1α and VEGF in human mesenchymal stem cell proliferation by 17β-estradiol: involvement of PKC, PI3K/Akt, and MAPKs. Am. J. Physiol. Cell Physiol. 296:C317–C326, 2009.

    CAS  PubMed  Google Scholar 

  139. Zhao, F., R. Chella, and T. Ma. Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling. Biotechnol. Bioeng. 96:584–595, 2007.

    CAS  PubMed  Google Scholar 

  140. Zhao, W., X. Li, X. Liu, N. Zhang, and X. Wen. Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Mater. Sci. Eng. C Mater. Biol. Appl. 40:316–323, 2014.

    CAS  PubMed  Google Scholar 

  141. Zimmermann, J. A., M. H. Hettiaratchi, and T. C. McDevitt. Enhanced Immunosuppression of T cells by sustained presentation of bioactive interferon-γ within three-dimensional mesenchymal stem cell constructs. Stem Cells Transl. Med. 6:223–237, 2017.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Engineering Research Center for Cell Manufacturing Technologies (CMaT) of the National Science Foundation under Grant No. EEC-1648035, and by the “Programa de Apoyo Institucional Para la Formación en Estudios de Posgrados en Maestrías y Doctorados de La Universidad del Atlántico, Colombia” by providing DCC a scholarship. Supported by PR-INBRE an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant Number P20 GM103475.

Disclosure

The authors declare that no competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Almodovar.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castilla-Casadiego, D.A., Reyes-Ramos, A.M., Domenech, M. et al. Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and Their Functional Characteristics. Ann Biomed Eng 48, 519–535 (2020). https://doi.org/10.1007/s10439-019-02400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02400-3

Keywords

Navigation