Skip to main content
Log in

Risk assessment of low arsenic exposure using biomarkers of oxidative and genotoxic stress in a piscine model

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The high level exposure to arsenic induces marked oxidative and genotoxic stress. However, information on the potential of low level arsenic exposure in this context is still scanty. In the present study, the extent of oxidative stress and genetic toxicity induced by low arsenic exposure was explored in freshwater fish Channa punctatus. Fish were exposed to low levels of arsenic (10 and 50 µg L−1) as well as to its high level (500 µg L−1) using sodium arsenite in aquaria water for 14 consecutive days. The TBARS assay for lipid peroxidation exhibited the increased occurrence of oxidative damage in the erythrocytes of fish at both the lower and higher levels of arsenic exposure. The level of reduced glutathione was also elevated in all the three arsenic exposed groups of fish compared to control. In contrast, significant decline was observed in the levels of three major antioxidant enzymes namely, superoxide dismutase, catalase and glutathione peroxidase, upon exposure to higher as well as lower levels of arsenic. Significant increases in micronucleus induction were found in the erythrocytes of fish even at the low levels of arsenic exposure. The study further revealed the occurrence of DNA fragmentation in the erythrocytes of fish at low arsenic exposures as well. The low level exposure to arsenic (using sodium arsenite), therefore, appeared to be capable of inducing noticeable oxidative stress as well as potential genotoxic effect in Channa punctatus. Moreover, the ability of arsenic to induce oxidative stress invariably appeared correlated with its genotoxic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (2007) Toxicological Profile for Arsenic. United States Department for Health and Human Services, Atlanta

  • Ahmed MK, Akhand AA, Hasan M, Islam MM, Hasan MA (2008) Toxicity of arsenic (sodium arsenite) to freshwater spotted snakehead (Channa punctatus Bloch and Schneider, 1801) on cellular death and DNA content. Am-Eurasian J Agric Environ Sci 4(1):18–22

    Google Scholar 

  • Ahmed MK, Habibullah.-Al-Mamun M, Hossain MA, Arif M, Parvin E, Akter MS, Khan MS, Islam MM (2011) Assessing the genotoxic potentials of arsenic in Tilapia (Oreochromis mossambicus) using alkaline comet assay and micronucleus test. Chemosphere 84:143–149

    Article  CAS  Google Scholar 

  • Alarific S, Ali D, Alkahtani S, Siddiqui MA, Ali BA (2013) Arsenic trioxide-mediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells. Onco Targets Ther 6:75–84

    Google Scholar 

  • Allen T, Singhal R, Rana SVS (2004) Resistance to oxidative stress in a freshwater fish Channa punctatus after exposure to inorganic arsenic. Biol Trace Element Res 98:63–72

    Article  CAS  Google Scholar 

  • APHA (2017) Standard Methods for Examination of Water and Wastewater, 23rd edn. American Public Health Association, New York, Washington, DC

  • Bagnyukova TV, Luzhna LI, Pogribny IP, Lushchak VI (2007) Oxidative stress and antioxidant defences in goldfish liver in response to short-term exposure to arsenite. Environ Mol Mutagen 48:658–665

    Article  CAS  Google Scholar 

  • Banerjee M, Banerjee N, Bhattacharjee P, Mondal D, Lythegoe PR, Martinez M, Pan J, Polya DA, Giri AK (2013) High arsenic in rice is associated with elevated genotoxic effect in humans. Sci Rep 3 https://doi.org/10.1038/srep02195

  • Bashir S, Sharma Y, Irshad M, Dutta Gupta S, Dogra TD (2006) Arsenic induced cell death in liver and brain of experimental rats. Basic Clin Pharmacol Toxicol 98:38–43

    Article  CAS  Google Scholar 

  • Basu A, Mahata J, Gupta S, Giri AK (2001) Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res 488:171–194

    Article  CAS  Google Scholar 

  • Basu A, Ghosh P, Das JK, Banerjee A, Ray K, Giri AK (2004) Micronuclei as biomarkers of carcinogen exposure in populations exposed to arsenic through drinking water in West Bengal, India: a comparative study in 3 cell types. Cancer Epidemiology Biomarkers Prev 13:820–827

    CAS  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 6:882–888

    Google Scholar 

  • Bhattacharya A, Bhattacharya S (2005) Induction of oxidative stress by arsenic in Clarius batrachus: involvement of peroxisomes. Ecotoxicol Environ Saf 66:178–187

  • Bhattacharya A, Bhattacharya S (2007) Induction of oxidative stress by arsenic in Clarius batrachus: involvement of peroxisomes. Ecotoxicol Environ Saf 66:178–187

    Article  CAS  Google Scholar 

  • Bhattacharya S, Bhattacharya A, Roy S (2007) Arsenic induced responses in freshwater teleosts. Fish Physiol Biochem 33:463–473

    Article  CAS  Google Scholar 

  • Boelsterli UA (2003) Mechanistic Toxicology: the Molecular Basis of How Chemicals Disrupt Biological Targets. Taylor & Francis, London and New York

  • Bossu P (1999) Qualitative analysis of DNA fragmentation by agarose gel electrophoresis. In: Cossarizza A, Boraschi D (eds) Apoptosis: A Laboratory Mannual of Experimental Methods, Vol 4. Purdue Cytometry CD-ROM Series L'Aquila

  • Brambila EM, Achanzar WE, Qu W, Webber MM, Walkes MP (2002) Chronic arsenic-exposed human prostate epithelial cells exhibit stable arsenic tolerance: mechanistic implications of altered cellular glutathione and glutathione S-transferase. Toxicol Appl Pharmacol 183:99–107

    Article  CAS  Google Scholar 

  • Bureau of Indian Standard (2010) Groundwater quality in shallow aquifers of India, Central Groundwater Board, Ministry of Water Resources. Government of India, Faridabad

  • CPCSEA (2006) The Breeding and Experiments on Animals (Control and Supervision) Amendment Rule. Committee for the Purpose of Control and Supervision of Experiments on Animals, Ministry of Environment, Forests and Climate Change, Government of India, New Delhi

  • Chakraborty T, Das U, Poddar S, Sengupta B, De M (2006) Micronuclei and chromosomal aberrations as biomarkers: a study in an arsenic exposed population in West Bengal, India. Bull Environ Contam Toxicol 76:970–976

    Article  CAS  Google Scholar 

  • Chow CK (1998) Interrelationship of cellular antioxidant defense systems. In: Chow CK (ed.) Cellular Antioxidant Defense Mechanisms.Vol 2. CRS Press, Boca Raton, p 97–109

  • D’lppoliti D, Santelli E, De Sario M, Scortichini M, Davoli M, Michelozzi P(2015) Arsenic in drinking water and mortality for cancer and chronic diseases in Central Italy PLoS ONE 10 10.1371/journal.pone.0138182:1990–2010

  • Das S, Unni B, Bhattacharjee M, Wann SB, Rao PG (2012) Toxicological effects of arsenic exposure in a freshwater teleost fish Channa punctatus. Afr J Biotech 11:4447–4454

    CAS  Google Scholar 

  • Dash M, Maity M, Dey A, Perveen H, Khatun S, Jana L, Chattopadhyay S (2018) The consequences of NAC on sodium arsenite-induced uterine oxidative stress. Toxicol Rep 5:278–287

    Article  CAS  Google Scholar 

  • Datta S, Saha DR, Ghosh D, Majumdar T, Bhattacharya S, Mazumder S (2007) Sublethal concentration of arsenic interferes with the proliferation of hepatocytes and induces invivo apoptosis in Clarius batrachus. Comp Biochem Physiol 145:339–349

    Google Scholar 

  • de Zwart LL, Merman JHN, Commanndeur JNM, Vermeulen NPE (1999) Biomarkers of free radical damage applications in experimental animals and in humans. Free Rad Biol Med 26:202–226

    Article  Google Scholar 

  • Dodson M, de la Vega MR, Harder B, Castr-Portuguez R, Rodrigues SD, Wong PK, Chapman E, Zhang DD (2018) Low-level arsenic causes proteotoxic stress and not oxidative stress. Toxicol AppL Pharmacol 341:106–113

    Article  CAS  Google Scholar 

  • Faita F, Cori L, Bianchi F, Andreassi MG (2013) Arsenic induced genotoxicity and genetic susceptibility to arsenic related pathologies. Int. J. Environ. Res. Public Health 10:1527–1546

    Article  CAS  Google Scholar 

  • Filho DW (2006) Fish antioxidant defenses - a comparative approach. Brj J Med Biol Res 29:1735–1742

    Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean. Br J Pharmacol 142:231–255

    Article  CAS  Google Scholar 

  • He W, Meghraj M, Naidu R (2009) Toxicity of tri and pentavalent arsenic, alone and in combination, to the clado Daphnia carinata: the influence of microbial transformation in natural waters. Environ Geochem Health 31:13–141

  • Hei TK, Filipic M (2004) Role of oxidative damage in the genotoxicity of arsenic Free Rad Biol Med 37:574–581

    Article  CAS  Google Scholar 

  • Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123(2):305–332

    Article  CAS  Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2012) Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum 100C:1–526

  • Jang YC, Somanna Y, Kim H (2016) Source, distribution, toxicity and remediation of arsenic in the environment—a review. Int J Appl Environ Sci 11:559–581

    Google Scholar 

  • Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    Article  CAS  Google Scholar 

  • Jankong P, Chalhoub C, Kienzl N, Goessler W, Farncesconi KA, Visoottiviseth P (2007) Arsenic accumulation and speciation in freshwater fish living in arsenic contaminated waters. Environ Chem 4:11–17

    Article  CAS  Google Scholar 

  • Jha AN (2004) Genotoxicological studies in aquatic organism: An overview. Mutat Res 552:1–17

    Article  CAS  Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    CAS  Google Scholar 

  • Kar S, Maity JP, Jean JS, Liu CC, Nath B, Yang HJ, Bundschub J (2010) Arsenic enriched aquifers: occurrences and mobilization of arsenic in groundwater of Ganges Delta Plain, Barasat, West Bengal, India. Appl Geochem 25:1804–1814

    Article  CAS  Google Scholar 

  • Kehrer JP (1993) Free radical as mediator of tissue injury and disease. Crit Rev Toxicol Inform Health 23:21–48

  • Kesari VP, Kumar A, Khan PK (2012) Genotoxic potential of arsenic at its reference dose. Ecotoxicol Environ Saf 80:126–131

    Article  CAS  Google Scholar 

  • Khalid MS, Magda EE, Amani MA (2006) The molecular changes of hepatocytes in Tilapia zillii under the effect of agricultural and industrial pollution in the river Nile, Egypt. Egypt J Aquat Biol Fish 10:55–76

    Google Scholar 

  • Khan PK, Kesari VP, Kumar A (2013) Mouse micronucleus assay as a surrogate to assess genotoxic potential of arsenic at its human reference dose. Chemosphere 90:993–997

    Article  CAS  Google Scholar 

  • Kitchin KT, Conolly R (2010) Arsenic-induced carcinogenesis-oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chem Res Toxicol 23:327–335

  • Kligerman AD, Doerr CL, Tennant AH, Harrington-Brock K, Allen JW, Winfield E, Poorman-Allen P, Kundu B, Funasaka K, Roop BC, Mass MJ, Marini DM (2003) Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: induction of chromosomal mutations but not gene mutations. Environ Mol Mutagen 42:192–205

    Article  CAS  Google Scholar 

  • Kumar A, Kesari VP, Alok AK, Kazim SN, Khan PK (2014) Assessment of arsenic-induced DNA damage in goldfish by a polymerase chain reaction-based technique using random amplified polymorphic DNA markers. Arch Environ Contam Toxicol 67:630–638

    Article  CAS  Google Scholar 

  • Kumar A, Kesari VP, Khan PK (2013) Fish micronucleus assay to assess genotoxic potential of arsenic at its guideline exposure in aquatic environment. Biometals 26:337–334

  • Kumar M, Lalit M, Thakur R (2016) Natural antioxidants against arsenic induced genotoxicity. Biol Trace Elem Res 170:84–93

    Article  CAS  Google Scholar 

  • Lackner R (1998) Oxidative stress in fish by environmental pollutants. In: Braunbeck T, Hinton DE, Streit B (eds) Fish Ecotoxicology. Birkhause Verlag, Basel, pp 203–224

  • Lantz RC, Hays AM (2006) Role of oxidative stress in arsenic-induced toxicity. Drug Metab Rev 38:791–804

    Article  CAS  Google Scholar 

  • Lewinska D, Palus J, Stepnik M, Dziubaltowaska E, Beck J, Rydzynski K, Natarajan AT, Nilsson R (2007) Micronucleus frequency in peripheral blood lymphocytes and buccal mucosa cells of copper smelter workers with special regards to arsenic exposure. Int Arch Occup Environ Health 80:371–380

    Article  CAS  Google Scholar 

  • Li M, Cai JF, Chin JF (2002) Arsenic induces oxidative stress and activates stress gene expression in cultured lung epithelial cells. J Cell Biochem 87:29–38

    Article  CAS  Google Scholar 

  • Liu SX, Athar M, Lippai I, Waldren C, Hei TK (2001) Induction of oxyradicals by arsenic; implication for mechanism of genotoxicity. Proc Natl Acad Sci USA 98:1643–1648

    Article  CAS  Google Scholar 

  • Liu Y, Zheng BH, Fu Q, Meng W, Wang YY (2009) Risk assessment and management of arsenic in source water in China. J Hazard Mater 170:729–734

    Article  CAS  Google Scholar 

  • Lubin JH, Beane FLE, Cantor KP (2007) Inorganic arsenic in drinking water: an evolving public health concern. J Nat Can Inst 99:906–907

    Article  CAS  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  Google Scholar 

  • Mahata J, Basu A, Ghoshal S, Sarkar JN, Roy AK, Poddar G, Nandy AK, Banerjee A, Ray K, Natarajan AT, Nilsson R, Giri AK (2003) Chromosomal aberrations and sister chromatid exchanges in individuals exposed to arsenic through drinking water in West Bengal, India. Mutat Res 534:133–143

    Article  CAS  Google Scholar 

  • Marchiset-Ferlay N, Savanovitch C, Sauvant-Rochat MP (2012) What is the best biomarker to assess arsenic exposure via drinking water. Environ Int 9:150–171

    Article  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the auto-oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  Google Scholar 

  • Martinez V, Creus A, Venegas W, Arroyo A, Beck JP, Gobel TW, Surrales J, Marcos R (2005) Micronucei assessment in buccal cells of people envirionmentally exposed to arsenic in northern Chile. Toxicol Lett 155:319–327

  • Martinez VD, Vucic EA, Adonis M, Gil L, Lam WL (2011) Arsenic biotransformation as a cancer promoting factor by inducing DNA damage and disruption of repair mechanisms. Mol Biol Int https://doi.org/10.4061/2011/718974

  • Murcott S (2012) Arsenic contamination in the World: an International Sourcebook. I.W.A. Publishing, London

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano J, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121:295–302

    Article  CAS  Google Scholar 

  • Nesnow S, Roop BC, Lambert G, Kadiiska M, Mason RP, Cullen WR, Mass MJ (2002) DNA damage induced by methylated trivalent arsenicals is mediated by reactive oxygen species. Chem Res Toxicol 15:1627–1634

    Article  CAS  Google Scholar 

  • NRC (2001) Arsenic in drinking water. National Research Council, National Academy Press, Washington DC

  • NRC Critical Aspects of EPA’s IRIS (2014) Assessment of Inorganic Arsenic: Interim Report. National Research Council, National Academies Press, Washington, DC

  • Ochi T, Suzuki T, Ishono H, Schlagenhaufen C, Goessler W, Tsutsui T (2004) Induction of structural and numerical changes of chromosome, centrosome abnormality, multipolar spindles and multipolar division in cultured Chinese hamster v 79 cells by exposure to a trivalent dimethylarsenic compound. Mutat Res 530:59–71

    Article  CAS  Google Scholar 

  • Orbea A, Ortiz-Zarragoitia M, Solé M, Porte C, Cajaraville MP (2002) Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay). Aquat Toxicol 58:75–98

    Article  CAS  Google Scholar 

  • Palus J, Lewinska D, Dziubaltowaska E, Stepnik M, Beck J, Rydzynski K, Nilsson R (2005) DNA damage in leukocytes of workers occupationally exposed to arsenic in copper smelters. Environ Mol Mutagen 46:81–87

    Article  CAS  Google Scholar 

  • Pandey S, Kumar R, Sharma S, Nagpure NS, Srivastava SK, Verma MS (2005) Acute toxicity bioassays of mercuric chloride and malathion on air breathing fish Channa punctatus (Bloch). Ecotoxicol Environ Saf 61:114–120

    Article  CAS  Google Scholar 

  • Pei Q, Ma N, Zhang J, Xu W, Li Y, Ma Z, Li Y, Tian F, Zhang W, Mu J, Li Y, Wang D, Liu H, Yang M, Ma C, Yun F (2013) Oxidative DNA damage of peripheral blood polymorphonuclear leukocytes, selectively induced by chronic arsenic exposure is associated with extent of arsenic–related skin lesions. Toxicol Appl Pharmacol 266:143–149

    Article  CAS  Google Scholar 

  • Pi J, Yamauchi H, Kumagai Y, Sun G, Yoshida T, Aikawa H, Hopenhayn-Rich C, Shimojo N (2002) Evidence for induction of Oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect 110:331–336

    Article  CAS  Google Scholar 

  • Polya D, Middleton D (2017) Arsenic in drinking water: sources and human exposure routes. In: Bhattacharya P, Polya D, Javonovick D (eds) Best Practice Guide on the Control of Arsenic in Drinking Water. IWA Publishing, London

  • Ramirez OAB, Garcia FP (2005) Genotoxic damage in zebra fish (Danio rerio) by arsenic in waters from Zimapan, Hidalgo. Mexico Mutagenesis 20:291–295

    Article  CAS  Google Scholar 

  • Ramírez T, Stopper H, Hock R, Herrera LA (2007) Prevention of aneuploidy by S-adenosyl-methionine in human cells treated with sodium arsenite. Mutat Res 617:16–22

    Article  CAS  Google Scholar 

  • Ronci L, Matthaeis ED, Chimenti C, Davolos D (2017) Arsenic-contaminated freshwater: assessing arsenate and arsenite toxicity and low-dose genotoxicity in Gammarus elvirae (Crustacea; Amphipoda). Ecotoxicol 26:581–588

    Article  CAS  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB (1973) Selenium: Biochemical roles as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  Google Scholar 

  • Ruiz-Ramos R, Lopez-Carrillo L, Rios-Perez AD, Vizcaya-Ruiz AD, Cebrian ME (2009) Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-Kb activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res 674:109–115

    Article  CAS  Google Scholar 

  • Sahu SN, Lewis J, Patel I, Bozdag S, Lee JH, Sprando R, Cinar HN (2013) Genomic analysis of stress response against arsenic in Caenorhabditis elegans. PLOS ONE 8:e66431. https://doi.org/10.1371/journal

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning: a Laboratory Manual. Cold Spring Harbour Laboratory Press, New York

  • Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S (2014) Low dose of arsenic trioxide triggers oxidative stress in Zebrafish Brain: expression of antioxidant genes. Ecotoxicol Environ Saf 107:1–8

    Article  CAS  Google Scholar 

  • Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S (2017) Differential modulation of cellular antioxidant status in zebrafish liver and kidney exposed to low dose arsenic trioxide. Ecotoxicol Environ Saf 13:173–182

    Article  CAS  Google Scholar 

  • Schuliga M, Chouchane S, Snow ET (2002) Upregulation of glutathione related genes and enzyme activities in cultured human cells by sublethal concentration of inorganic arsenic. Toxicol Sci 70:183–192

    Article  CAS  Google Scholar 

  • Sciandrello G, Barbaro R, Caradonna F, Barbata G (2002) Early induction of genetic instability and apoptosis by arsenic in cultured Chinese hamster cells. Mutagenesis 17:99–103

    Article  CAS  Google Scholar 

  • Sciandrello G, Caradonna FM, Mauro M, Barbata G (2004) Arsenic-induced DNA hypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis 25:413–417

    Article  CAS  Google Scholar 

  • Sercicova M, Modra H, Slaninova A, Svobodova Z (2011) Metals as a cause of oxidative stress in fish: a review. Veterinarni Medicina 56:537–546

    Article  Google Scholar 

  • Singh SK, Stern EA (2017) Global arsenic contamination: living with the poison nector. Environment 59:24–28

    Google Scholar 

  • Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  Google Scholar 

  • Smedley and Kinniburgh (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Thompson JA, White CC, Cox DP, Chan JY, Kavanagh TJ, Fausto N, Franklin CC (2009) Distinct Nrf1/2 independent mechanisms mediate As3+ induced glutamate cysteine ligase subunit gene expression in murine hepatocytes. Free Radic Biol Med 46:1614–1625

    Article  CAS  Google Scholar 

  • Tisler T, Zagorc-Koncan J (2002) Acute and chronic toxicity of arsenic to some aquatic organisms. Bull Environ Contam Toxicol 69:421–429

    Article  CAS  Google Scholar 

  • Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2011) National primary drinking water regulations; arsenic and clarifications to compliance and new source contaminant monitoring. Fed Regist 66:6976–7066

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189

    Article  CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment; a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Vuyyuri SB, Ishaq M, Kuppala D, Grover P, Ahuja YR (2006) Evaluation of micronucleus frequencies and DNA damage in glass workers exposed to arsenic. Environ Mol Mutagen 47:562–570

    Article  CAS  Google Scholar 

  • Ventura-Lima J, Fattorini D, Regoli F, Monserrat JM (2009a) Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after short-time exposure: bioaccumulation, biotransformation and biological responses. Environ Pollut 157:3479–3484

  • Ventura-Lima J, Castro MR, Acosta D, Fattorini D, Regoli F, Carvalho LM, Bohrer D, Geracitano LA, Barros DM, Marins LFF, Silva RS, Bonan CD, Bogo MR, Monserrat JM (2009b) Effects of arsenic (As) exposure on the antioxidant status of gills of the zebra fish Danio rerio (Cypridinae). Comp Biochem Physiol 149:538–543

    Google Scholar 

  • World Health Organization (2011) Guideline for Drinking-water Quality. World Health Organisation 4:315–318

  • Yadav KK, Trivedi SP (2009a) Sub-lethal exposure of heavy metals induces micronuclei in fish, Channa punctata. Chemosphere 77:1495–1500

  • Yadav KK, Trivedi SP (2009b) Chromosomal aberrations in a fish, Channa punctata after in vivo exposure to three heavy metals. Mutat Res 678:7–12

  • Yih LH, Lee TC (1999) Effects of exposure protocols on induction of kinetochore-plus and -minus micronuclei by arsenite in diploid human fibroblasts. Mutat Res 440:75–82

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial assistance from DBT-PU-IPLS scheme (Sanction No. BT/PR4577/INF/22/149/2012) of the Department of Biotechnology, Government of India to PKK as Co-Project Investigator, DKJ as Junior Research Fellow and KS as Technical Officer is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimal K. Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experimental design of this study, approved by institutional ethical committee, was within the ethical norm suggested by CPCSEA (2006).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, D.K., Sayrav, K., Mishra, G.P. et al. Risk assessment of low arsenic exposure using biomarkers of oxidative and genotoxic stress in a piscine model. Ecotoxicology 28, 669–679 (2019). https://doi.org/10.1007/s10646-019-02060-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-019-02060-y

Keywords

Navigation