Skip to main content
Log in

Visualization-Based Analysis for a Mixed-Inhibition Binary PBPK Model: Determination of Inhibition Mechanism

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

A physiologically based pharmacokinetic (PBPK) model incorporating mixed enzyme inhibition was used to determine the mechanism of metabolic interactions occurring during simultaneous exposures to the organic solvents chloroform and trichloroethylene (TCE). Visualization-based sensitivity and identifiability analyses of the model were performed to determine the conditions under which four inhibitory parameters describing inhibitor binding could be estimated. The sensitivity methods were used to reduce the 4-parameter estimation problem into two distinct 2-parameter problems. The inhibitory parameters were then estimated from multiple closed-chamber gas-uptake experiments using graphical methods. The estimated values of the four inhibitory parameters predicted that chloroform and TCE interact in a competitive manner. Based on the model analysis, we present recommendations for the design of experiments for determination of inhibition mechanism in binary chemical mixtures. We assert that a thorough analysis of the parameter-dependent sensitivity and identifiability characteristics can be used to plan efficient experimental protocols for the quantitative analysis of inhalation pharmacokinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Tardif, S. Laparé, K. Krishnan, and J. Brodeur. Physiologically-based modeling of the toxicokinetic interaction between toulene and m-xylene in the rat. Toxicol. Appl. Pharmacol. 120:266–273 (1993).

    Article  PubMed  Google Scholar 

  2. R. Tardif, G. Charest-Tardif, J. Brodeur, and K. Krishnan. Physiologically-based pharmacokinetic modeling of a ternary mixture of alkyl benzenes in rats and humans. Toxicol. Appl. Pharmacol. 144:120–134 (1997).

    Article  PubMed  Google Scholar 

  3. M. E. Andersen, M. L. Gargas, H. J. Clewell, and K. M. Severyn. Quantitative evaluation of the metabolic interactions between trichloroethylene and 1, 1-dichloroethylene in vivo using gas-uptake methods. Toxicol. Appl. Pharmacol. 89:149–157 (1987).

    Article  PubMed  Google Scholar 

  4. I. D. Dobrev, M. E. Andersen, and S. H. Yang. Assessing interaction thresholds for trichloroethylene in combination with tetrachloroethylene and 1,1,1-trichloroethane using gas-uptake studies and PBPK modeling. Arch. Toxicol. 75:134–144 (2001).

    Article  PubMed  Google Scholar 

  5. J. C. Ramsey and M. E. Andersen. A physiologically-based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol. Appl. Pharmacol. 73:159–175 (1984).

    Article  PubMed  Google Scholar 

  6. M. V. Evans, W. D. Crank, H. Yang, and J. E. Simmons. Applications of sensitivity analysis to a physiologically-based pharmacokinetic model for carbon tetrachloride in rats. Toxicol. Appl. Pharmacol. 128:36–44 (1994).

    Article  PubMed  Google Scholar 

  7. R. A. Corley, A. L. Mendrala, F. A. Smith, D. A. Staats, M. L. Gargas, R. B. Conolly, M. E. Andersen, and R. H. Reitz. Development of a physiological based pharmacokinetic model for chloroform. Toxicol. Appl. Pharmacol. 103:512–527 (1990).

    Article  PubMed  Google Scholar 

  8. C. E. Dallas, J. M. Gallo, R. Ramanathan, S. Muralidhara, and J. V. Bruckner. Physiological pharmacokinetic modeling of inhaled trichloroethylene in rats. Toxicol. Appl. Pharmacol. 110:303–314 (1991).

    PubMed  Google Scholar 

  9. L. H. Lash, J. W. Fisher, J. C. Lipscomb, and J. C. Parker. Metabolism of trichloroethylene. Environ. Health. Perspect. 108(Suppl 2):177–200 (2000).

    Google Scholar 

  10. Toxicological Review of Chloroform. U.S. EPA. Washington, DC. EPA/635/R-01/001. (October, 2001).

  11. A. A. Constan, C. S. Sprankle, J. M. Peters, G. L. Kedderis, J. I. Everitt, B. A. Wong, F. L. Gonzalez, and B. E. Butterworth. Metabolism of chloroform by cytochrome P450 2E1 is required for induction of toxicity in the liver, kidney, and nose of male mice. Toxicol Appl Pharmacol. 160(2):120–126 (1999).

    Article  PubMed  Google Scholar 

  12. T. Palmer. Understanding Enzymes. (Wiley: London, 1981).

    Google Scholar 

  13. M. L. Gargas, M. E. Andersen, and H. J. III Clewell. A physiologically based simulation approach for determining metabolic parameters from gas-uptake data. Toxicol. Appl. Pharmacol. 86:341–352, 1986.

    Article  PubMed  Google Scholar 

  14. S. Bosan and T. R. Harris. Visualization-based analysis of multiparameter models using environment for n-dimensional model analysis, Comp. Biomed. Res. 30:171–187, (1997).

    Article  Google Scholar 

  15. F. R. Haselton, R. J. Roselli, R. E. Parker, and T. R. Harris, An effective-diffusivity model of pulmonary capillary exchange: general theory, limiting cases, and sensitivity analysis, Math. Biosci. 70:237–63 (1984).

    Article  Google Scholar 

  16. J. Beck and K. Arnold. Parameter Estimation in Engineering and Science (New York: Wiley: 1977) pp. 19–23.

    Google Scholar 

  17. Behavior and Determination of Volatile Organic Compounds in Soil. U.S. EPA. Washington, DC. EPA/600/R-93/140 (May, 1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaacs, K.K., Evans, M.V. & Harris, T.R. Visualization-Based Analysis for a Mixed-Inhibition Binary PBPK Model: Determination of Inhibition Mechanism. J Pharmacokinet Pharmacodyn 31, 215–242 (2004). https://doi.org/10.1023/B:JOPA.0000039565.11358.94

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPA.0000039565.11358.94

Navigation