Skip to main content
Log in

Knockout of the Placenta Specific 8 Gene Affects the Proliferation and Migration of Human Embryonic Kidney 293T Cell

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Candidate oncogene placenta specific 8 (PLAC8) has been identified to participate in different cellular process and human diseases. However, the effects of PLAC8 on cell proliferation and migration in human kidney cancer (KC) remained unclear. In current study, physiological effects of PLAC8 in immortalized human embryonic kidney cell line (HEK293T) were investigated in vitro. Two PLAC8 knockout (KO) cell lines were established via CRISPR/Cas9-mediated methods combined with fluorescence activated single cell sorting. To classify the characteristic of PLAC8 during cell proliferation and migration in HEK293T, cellular proliferative activity was analyzed by cell counting and colony formation assay. Cell cycle distribution was analyzed by flow cytometry. Cellular motile activity was analyzed by wound-healing and migration assay. Further underlying molecular mechanism was explored via western blot. With the KO cell lines, it was found that PLAC8 KO could decrease cell proliferation. Moreover, the inhibitory effects of PLAC8 KO on cell proliferation were associated with a G2/M arrest in cell cycle progression concomitant with a remarkable inhibition of Cyclin B1 and elevation of Cyclin A. The alteration of cell cycle proteins and E-cadherin might further associate with the enhancement of cell motility. Our study revealed a novel role for PLAC8 in cell proliferation and migration of HEK293T cells, which might shed light on further study of PLAC8 on human KC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated and analyzed in this study are available upon reasonable request from the corresponding author.

Abbreviations

ccRCC:

clear cell renal cell carcinoma

CDC:

cell division cycle

CDK:

cyclin-dependent kinase

EMT:

epithelial-mesenchymal transition

FACS:

fluorescence activated cell sorting

FITC:

fluorescein isothiocyanate

gRNA:

guide RNA

HEK293T:

embryonic kidney cell line

KC:

kidney cancer

KO:

knockout

NC:

nitrocellulose

PBS:

phosphate-buffered saline

PI:

propidium iodide

PLAC8:

Placenta specific 8

WT:

wildtype

References

  1. Galaviz-Hernandez, C., et al. (2003). Plac8 and Plac9, novel placental-enriched genes identified through microarray analysis. Gene, 309, 81–89.

    Article  CAS  Google Scholar 

  2. Huang, M. L., et al. (2019). Placenta specific 8 gene induces epithelial-mesenchymal transition of nasopharyngeal carcinoma cells via the TGF-beta/Smad pathway. Experimental Cell Research, 374, 172–180.

    Article  CAS  Google Scholar 

  3. Yang, R., et al. (2018). Knockout of the placenta specific 8 gene radiosensitizes nasopharyngeal carcinoma cells by activating the PI3K/AKT/GSK3 beta pathway. American Journal of Translational Research, 10, 455–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jia, Y., et al. (2018). The novel KLF4/PLAC8 signaling pathway regulates lung cancer growth. Cell Death & Disease, 9, 603.

    Article  Google Scholar 

  5. Balakrishnan, V., et al. (2015). Plac8 links oncogenic mutations to regulation of autophagy and is critical to pancreatic cancer progression. Cancer Research, 75, 1143–1155.

    Google Scholar 

  6. Zou, L., et al. (2016). Down-regulated PLAC8 promotes hepatocellular carcinoma cell proliferation by enhancing PI3K/Akt/GSK3 beta/Wnt/beta-catenin signaling. Biomed Pharmacother, 84, 139–146.

    Article  CAS  Google Scholar 

  7. Li, C. X., et al. (2014). Excess PLAC8 promotes an unconventional ERK2-dependent EMT in colon cancer. Journal of Clinical Investigation, 124, 2172–2187.

    Article  CAS  Google Scholar 

  8. Kolluru, V., et al. (2017). Induction of Plac8 promotes pro-survival function of autophagy in cadmium-induced prostate carcinogenesis. Cancer Letters, 408, 121–129.

    Article  CAS  Google Scholar 

  9. Kaistha, B. P., et al. (2016). PLAC8 localizes to the inner plasma membrane of pancreatic cancer cells and regulates cell growth and disease progression through critical cell-cycle regulatory pathways. Cancer Research, 76, 96–107.

    Article  CAS  Google Scholar 

  10. Shi, L., et al. (2017). Overexpression of placenta specific 8 is associated with malignant progression and poor prognosis of clear cell renal cell carcinoma. International Urology and Nephrology, 49, 1165–1176.

    Article  CAS  Google Scholar 

  11. Hsu, P. D., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31, 827.

    Article  CAS  Google Scholar 

  12. Ran, F. A., et al. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8, 2281–2308.

    Article  CAS  Google Scholar 

  13. Hu, H. M., et al. (2013). C1orf61 acts as a tumor activator in human hepatocellular carcinoma and is associated with tumorigenesis and metastasis. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 27, 163–173.

    Article  CAS  Google Scholar 

  14. Ouyang, C., et al. (2018). Placenta-specific 9, a putative secretory protein, induces G2/M arrest and inhibits the proliferation of human embryonic hepatic cells. Bioscience Reports, 38, BSR20180820.

  15. Zhan, W., et al. (2015). TRIM59 promotes the proliferation and migration of non-small cell lung cancer cells by upregulating cell cycle related proteins. PLoS ONE, 10, e0142596.

    Article  Google Scholar 

  16. Besson, A., Gurian-West, M., Schmidt, A., Hall, A., & Roberts, J. M. (2004). p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes & Development, 18, 862–876.

    Article  CAS  Google Scholar 

  17. Mendonsa, A. M., Na, T. Y., & Gumbiner, B. M. (2018). E-cadherin in contact inhibition and cancer. Oncogene, 37, 4769–4780.

    Article  CAS  Google Scholar 

  18. Kim, N. G., Koh, E., Chen, X., & Gumbiner, B. M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proceedings of the National Academy of Sciences of the United States of America, 108, 11930–11935.

    Article  CAS  Google Scholar 

  19. Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. The Journal of Biological Chemistry, 283, 14910–14914.

    Article  CAS  Google Scholar 

  20. Maretzky, T., et al. (2005). ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proceedings of the National Academy of Sciences of the United States of America, 102, 9182–9187.

    Article  CAS  Google Scholar 

  21. Canel, M., Serrels, A., Frame, M. C., & Brunton, V. G. (2013). E-cadherin-integrin crosstalk in cancer invasion and metastasis. Journal of Cell Science, 126, 393–401.

    Article  CAS  Google Scholar 

  22. Fagerberg, L., et al. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics, 13, 397–406.

    Article  CAS  Google Scholar 

  23. Debeb, B. G., et al. (2010). Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells. Molecular Cancer, 9, 180.

    Article  Google Scholar 

  24. Agarwal, M. L., Agarwal, A., Taylor, W. R., & Stark, G. R. (1995). p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 92, 8493–8497.

    Article  CAS  Google Scholar 

  25. Ujiki, M. B., et al. (2006). Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest. Molecular cancer, 5, 76.

    Article  Google Scholar 

  26. Tseng, T. H., et al. (2017). Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21(WAF1/CIP1) expression. Environmental Toxicology, 32, 434–444.

    Article  CAS  Google Scholar 

  27. Visanji, J. M., Thompson, D. G., & Padfield, P. J. (2006). Induction of G2/M phase cell cycle arrest by carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Letters, 237, 130–136.

    Article  CAS  Google Scholar 

  28. Goldstone, S., Pavey, S., Forrest, A., Sinnamon, J., & Gabrielli, B. (2001). Cdc25-dependent activation of cyclin A/cdk2 is blocked in G2 phase arrested cells independently of ATM/ATR. Oncogene, 20, 921–932.

    Article  CAS  Google Scholar 

  29. Innocente, S. A., Abrahamson, J. L., Cogswell, J. P., & Lee, J. M. (1999). p53 regulates a G2 checkpoint through cyclin B1. Proceedings of the National Academy of Sciences of the United States of America, 96, 2147–2152.

    Article  CAS  Google Scholar 

  30. Vincent, F., Deplanque, G., Ceraline, J., Duclos, B., & Bergerat, J. P. (1999). p53-independent regulation of cyclin B1 in normal human fibroblasts during UV-induced G2-arrest. Biology of the Cell, 91, 665–674.

    Article  CAS  Google Scholar 

  31. Choi, Y. H., Lee, W. H., Park, K. Y., & Zhang, L. (2000). p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Japanese Journal of Cancer Research: Gann, 91, 164–173.

    Article  CAS  Google Scholar 

  32. Yoshida, T., Tanaka, S., Mogi, A., Shitara, Y., & Kuwano, H. (2004). The clinical significance of Cyclin B1 and Wee1 expression in non-small-cell lung cancer. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 15, 252–256.

    Article  CAS  Google Scholar 

  33. Liu, F., Rothblum-Oviatt, C., Ryan, C. E., & Piwnica-Worms, H. (1999). Overproduction of human Myt1 kinase induces a G2 cell cycle delay by interfering with the intracellular trafficking of Cdc2-cyclin B1 complexes. Molecular and Cellular Biology, 19, 5113–5123.

    Article  CAS  Google Scholar 

  34. Bagui, T. K., Jackson, R. J., Agrawal, D., & Pledger, W. J. (2000). Analysis of cyclin D3-cdk4 complexes in fibroblasts expressing and lacking p27(kip1) and p21(cip1). Molecular and Cellular Biology, 20, 8748–8757.

    Article  CAS  Google Scholar 

  35. Polyak, K., et al. (1994). Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell, 78, 59–66.

    Article  CAS  Google Scholar 

  36. Dai, M., et al. (2013). Cyclin D1 cooperates with p21 to regulate TGFbeta-mediated breast cancer cell migration and tumor local invasion. Breast Cancer Research: BCR, 15, R49.

    Article  CAS  Google Scholar 

  37. Dai, M., et al. (2017). Erratum to: Cyclin D1 cooperates with p21 to regulate TGFbeta-mediated breast cancer cell migration and tumor local invasion. Breast Cancer Research: BCR, 19, 43.

  38. Qian, X., et al. (2013). p21CIP1 mediates reciprocal switching between proliferation and invasion during metastasis. Oncogene, 32, 2292–2303 e2297.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all the colleagues in Institute for Medical Biology for their technical support.

Funding

This project was supported by Fund for Key Laboratory Construction of Hubei Province (Grant No. 2018BFC360), the Natural Science Foundation of Hubei Province, China (Grant No. 2018CFB594 to LX), “the Fundamental Research Funds for the Central Universities”, South-Central University for Nationalities (Grant No. CZD19003 to LX) and the China Scholarship Council (Grant No. 201808420069 to LX). The funding body had no role in the design of the study and collection, analysis, and interpretation of data or in writing the manuscript.

Authors’ Contributions

J.S., Q.H.L. and L.X. conceived and designed the experiments. X.H.Q., H.X.W. and L.M. performed the experiments. X.H.Q. and L.X. analyzed the data and generated the figures. L.X. wrote the manuscript. All authors gave final approval for the submitted version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Xue.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Xu-Hui Qin, Hai-Xia Wang and Liqun Ma

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, XH., Wang, HX., Ma, L. et al. Knockout of the Placenta Specific 8 Gene Affects the Proliferation and Migration of Human Embryonic Kidney 293T Cell. Cell Biochem Biophys 78, 55–64 (2020). https://doi.org/10.1007/s12013-019-00893-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-019-00893-2

Keywords

Navigation