Skip to main content

Advertisement

Log in

Ultrasound-Based Optimal Parameter Estimation Improves Assessment of Calf Muscle–Tendon Interaction During Walking

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present and evaluate a new approach to estimate calf muscle–tendon parameters and calculate calf muscle–tendon function during walking. We used motion analysis, ultrasound, and EMG data of the calf muscles collected in six young and six older adults during treadmill walking as inputs to a new optimal estimation algorithm. We used estimated parameters or scaled generic parameters in an existing approach to calculate muscle fiber lengths and activations. We calculated the fit with experimental data in terms of root mean squared differences (RMSD) and coefficients of determination (R2). We also calculated the calf muscle metabolic energy cost. RMSD between measured and calculated fiber lengths and activations decreased and R2 increased when estimating parameters compared to using scaled generic parameters. Moreover, R2 between measured and calculated gastrocnemius medialis fiber length and soleus activations increased by 19 and 70%, and calf muscle metabolic energy decreased by 25% when using estimated parameters compared to using scaled generic parameters at speeds not used for estimation. This new approach estimates calf muscle–tendon parameters in good accordance with values reported in literature. The approach improves calculations of calf muscle–tendon interaction during walking and highlights the importance of individualizing calf muscle–tendon parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Azizi, E., and T. J. Roberts. Biaxial strain and variable stiffness in aponeuroses. J. Physiol. 587:4309–4318, 2009.

    Article  CAS  Google Scholar 

  2. Bhargava, L. J., M. G. Pandy, and F. C. Anderson. A phenomenological model for estimating metabolic energy consumption in muscle contraction. J. Biomech. 37:81–88, 2004.

    Article  Google Scholar 

  3. Bolsterlee, B., S. C. Gandevia, and R. D. Herbert. Ultrasound imaging of the human medial gastrocnemius muscle: how to orient the transducer so that muscle fascicles lie in the image plane. J. Biomech. 49:1002–1008, 2016.

    Article  Google Scholar 

  4. Crowninshield, R. D., and R. A. Brand. A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14:793–801, 1981.

    Article  CAS  Google Scholar 

  5. De Groote, F., T. De Laet, I. Jonkers, and J. De Schutter. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis. J. Biomech. 41:3390–3398, 2008.

    Article  Google Scholar 

  6. De Groote, F., A. L. Kinney, A. V. Rao, and B. J. Fregly. Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem. Ann. Biomed. Eng. 44:2922–2936, 2016.

    Article  Google Scholar 

  7. De Groote, F., G. Pipeleers, I. Jonkers, B. Demeulenaere, C. Patten, J. Swevers, and J. De Schutter. A physiology based inverse dynamic analysis of human gait: potential and perspectives. Comput. Methods Biomech. Biomed. Eng. 12:563–574, 2009.

    Article  Google Scholar 

  8. De Groote, F., A. Van Campen, I. Jonkers, and J. De Schutter. Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors. J. Biomech. 43:1876–1883, 2010.

    Article  Google Scholar 

  9. Delabastita, T., S. Bogaerts, and B. Vanwanseele. Age-related changes in Achilles tendon stiffness and impact on functional activities: a systematic review and meta-analysis. J. Aging Phys. Act. 2018. https://doi.org/10.1123/japa.2017-0359.

    Article  PubMed  Google Scholar 

  10. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  Google Scholar 

  11. Farris, D. J., and G. A. Lichtwark. UltraTrack: software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images. Comput. Methods Programs Biomed. 128:111–118, 2016.

    Article  Google Scholar 

  12. Franz, J. R., L. C. Slane, K. Rasske, and D. G. Thelen. Non-uniform in vivo deformations of the human Achilles tendon during walking. Gait Posture 41:192–197, 2015.

    Article  Google Scholar 

  13. Franz, J. R., and D. G. Thelen. Imaging and simulation of Achilles tendon dynamics: implications for walking performance in the elderly. J. Biomech. 49:1403–1410, 2016.

    Article  Google Scholar 

  14. Fukunaga, T., K. Kubo, Y. Kawakami, S. Fukashiro, H. Kanehisa, and C. N. Maganaris. In vivo behaviour of human muscle tendon during walking. Proc. Biol. Sci. 268:229–233, 2001.

    Article  CAS  Google Scholar 

  15. Gerus, P., G. Rao, and E. Berton. Subject-specific tendon-aponeurosis definition in hill-type model predicts higher muscle forces in dynamic tasks. PLoS ONE 7:e44406, 2012.

    Article  CAS  Google Scholar 

  16. Gerus, P., G. Rao, and E. Berton. Ultrasound-based subject-specific parameters improve fascicle behaviour estimation in Hill-type muscle model. Comput. Methods Biomech. Biomed. Eng. 5842:37–41, 2015.

    Google Scholar 

  17. Karamanidis, K., and A. Arampatzis. Mechanical and morphological properties of human quadriceps femoris and triceps surae muscle-tendon unit in relation to aging and running. J. Biomech. 39:406–417, 2006.

    Article  Google Scholar 

  18. Lai, A., A. G. Schache, Y.-C. Lin, and M. G. Pandy. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed. J. Exp. Biol. 217:3159–3168, 2014.

    Article  Google Scholar 

  19. Lichtwark, G. A., K. Bougoulias, and A. M. Wilson. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J. Biomech. 40:157–164, 2007.

    Article  CAS  Google Scholar 

  20. Lichtwark, G. A., and A. M. Wilson. Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. J. Exp. Biol. 209:4379–4388, 2006.

    Article  CAS  Google Scholar 

  21. Lichtwark, G. A., and A. M. Wilson. Optimal muscle fascicle length and tendon stiffness for maximising gastrocnemius efficiency during human walking and running. J. Theor. Biol. 252:662–673, 2008.

    Article  CAS  Google Scholar 

  22. Mian, O. S., J. M. Thom, L. P. Ardigò, A. E. Minetti, and M. V. Narici. Gastrocnemius muscle-tendon behaviour during walking in young and older adults. Acta Physiol. 189:57–65, 2007.

    Article  CAS  Google Scholar 

  23. Mohammadi, R., and C. P. Phadke. The impact of incline and speed of treadmill on ankle muscle activity in middle-aged adults. J. Bodyw. Mov. Ther. 21:306–313, 2017.

    Article  Google Scholar 

  24. Monaco, V., and S. Micera. Age-related neuromuscular adaptation does not affect the mechanical efficiency of lower limbs during walking. Gait Posture 36:350–355, 2012.

    Article  CAS  Google Scholar 

  25. Neptune, R. R., K. Sasaki, and S. A. Kautz. The effect of walking speed on muscle function and mechanical energetics. Gait Posture 28:135–143, 2008.

    Article  Google Scholar 

  26. Passmore, E., A. Lai, M. Sangeux, A. G. Schache, and M. G. Pandy. Application of ultrasound imaging to subject-specific modelling of the human musculoskeletal system. Meccanica 2017. https://doi.org/10.1007/s11012-016-0478-z.

    Article  Google Scholar 

  27. Patterson, M. A., M. J. Weinstein, and A. V. Rao. An efficient overloaded method for computing derivatives of mathematical functions in MATLAB. ACM Trans. Math. Softw. 39:17:1–17:36, 2013.

    Article  Google Scholar 

  28. Rao, A. V., D. A. Benson, C. Darby, M. A. Patterson, C. Francolin, I. Sanders, and G. T. Huntington. GPOPS—II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 37:1–39, 2010.

    Article  Google Scholar 

  29. Saule, C., and R. Giegerich. Pareto optimization in algebraic dynamic programming. Algorithms Mol. Biol. 10:1–20, 2015.

    Article  Google Scholar 

  30. Sergi, G., C. Trevisan, N. Veronese, P. Lucato, and E. Manzato. Imaging of sarcopenia. Eur. J. Radiol. 85:1519–1524, 2016.

    Article  Google Scholar 

  31. Stenroth, L., J. Peltonen, N. J. Cronin, S. Sipila, and T. Finni. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J. Appl. Physiol. 113:1537–1544, 2012.

    Article  Google Scholar 

  32. Van Campen, A., G. Pipeleers, F. De Groote, I. Jonkers, and J. De Schutter. A new method for estimating subject-specific muscle–tendon parameters of the knee joint actuators: a simulation study network. Int. J. Numer. Methods Biomed. Eng. 30:969–987, 2014.

    Article  Google Scholar 

  33. Van Rossom, S., C. R. Smith, L. Zevenbergen, D. G. Thelen, B. Vanwanseele, D. Van Assche, and I. Jonkers. Knee cartilage thickness, T1ρ and T2 relaxation time are related to articular cartilage loading in healthy adults. PLoS ONE 12:1–16, 2017.

    Google Scholar 

  34. Wächter, A., and L. Biegler. On the implementation of a interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Programs 106:25–57, 2006.

    Article  Google Scholar 

  35. Winter, D. A., and H. J. Yack. EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr. Clin. Neurophysiol. 67:402–411, 1987.

    Article  CAS  Google Scholar 

  36. Zajac, F. E. Muscle and tendon: properties, models, scaling and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

No conflicts of interest have to be declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Delabastita.

Additional information

Associate Editor Elena S. Di Martino oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delabastita, T., Afschrift, M., Vanwanseele, B. et al. Ultrasound-Based Optimal Parameter Estimation Improves Assessment of Calf Muscle–Tendon Interaction During Walking. Ann Biomed Eng 48, 722–733 (2020). https://doi.org/10.1007/s10439-019-02395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02395-x

Keywords

Navigation