Transmission electron microscopy (TEM) of biological samples has a long history and has provided many important insights into fundamental processes and diseases. While great strides have been made in EM data collection and data processing, sample preparation is still performed using decades-old techniques. Those sample preparation methods rely on extensive macroscale purification and concentration to achieve homogeneity suitable for high-resolution analyses. Noting that relatively few bioparticles are needed to generate high-quality protein structures, this work uses microfluidics that can accurately and precisely manipulate and deliver bioparticles to grids for imaging. The use of microfluidics enables isolation, purification, and concentration of specific target proteins at these small scales and does so in a relatively short period of time (minutes). These capabilities enable imaging of more dilute solutions and obtaining pure protein images from mixtures. In this system, spatially isolated, purified, and concentrated proteins are transferred directly onto electron microscopy grids for imaging. The processing enables imaging of more dilute solutions, as low as 5 × 10−6 g/ml, with small total amounts of protein (<400 pg, 900 amol). These levels may be achieved with mixtures and, as proof-of-principle, imaging of one protein from a mixture of two proteins is demonstrated.

1.
S. A.
Arnold
,
S. A.
Muller
,
C.
Schmidli
,
A.
Syntychaki
,
L.
Rima
,
M.
Chami
,
H.
Stahlberg
,
K. N.
Goldie
, and
T.
Braun
,
Proteomics
18
(
5–6
),
e1700176
(
2018
).
2.
Z. H.
Zhou
,
Curr. Opin. Struct. Biol.
18
(
2
),
218
228
(
2008
).
3.
L. A.
Amos
,
R.
Henderson
, and
P. N. T.
Unwin
,
Prog. Biophys. Mol. Biol.
39
,
183
231
(
1982
).
5.
J. A.
Mindell
and
N.
Grigorieff
,
J. Struct. Biol.
142
(
3
),
334
347
(
2003
).
6.
K.
Lindorff-Larsen
,
R. B.
Best
,
M. A.
DePristo
,
C. M.
Dobson
, and
M.
Vendruscolo
,
Nature
433
,
128
(
2005
).
7.
A.
Cavalli
,
X.
Salvatella
,
C. M.
Dobson
, and
M.
Vendruscolo
,
Proc. Natl. Acad. Sci. U. S. A.
104
(
23
),
9615
9620
(
2007
).
8.
H. P.
Erickson
,
Biol. Proced. Online
11
,
32
51
(
2009
).
9.
S.
Boutet
,
L.
Lomb
,
G. J.
Williams
,
T. R.
Barends
,
A.
Aquila
,
R. B.
Doak
,
U.
Weierstall
,
D. P.
DePonte
,
J.
Steinbrener
,
R. L.
Shoeman
, and
M.
Messerschmidt
,
Science
337
,
362
364
(
2012
).
10.
D.
Quentin
and
S.
Raunser
,
J. Mol. Med.
96
(
6
),
483
493
(
2018
).
11.
N.
Greenbaum
and
R.
Ghose
, in
Encyclopedia of Life Sciences
(
Wiley
,
2010
).
12.
J.
Jaeger
, in
Encyclopedia of Life Sciences
(
Wiley
,
2014
).
13.
V. V.
Krishnan
and
B.
Rupp
, in
Encyclopedia of Life Sciences
(
Wiley
,
2012
).
14.
Y.
Cheng
,
R. M.
Glaeser
, and
E.
Nogales
,
Cell
171
(
6
),
1229
1231
(
2017
).
15.
K.
Murata
and
M.
Wolf
,
Biochim. Biophys. Acta Gen. Subj.
1862
(
2
),
324
334
(
2018
).
16.
R. F.
Thompson
,
M.
Walker
,
C. A.
Siebert
,
S. P.
Muench
, and
N. A.
Ranson
,
Methods
100
,
3
15
(
2016
).
17.
J.
Dubochet
,
M.
Adrian
,
J. J.
Chang
,
J. C.
Homo
,
J.
Lepault
,
A. W.
McDowall
, and
P.
Schultz
,
Q. Rev. Biophys.
21
(
2
),
129
228
(
1988
).
18.
R. W.
Knispel
,
C.
Kofler
,
M.
Boicu
,
W.
Baumeister
, and
S.
Nickell
,
Nat. Methods
9
(
2
),
182
184
(
2012
).
19.
H.
Schagger
,
W. A.
Cramer
, and
G.
Vonjagow
,
Anal. Biochem.
217
,
220
230
(
1994
).
20.
N. A.
Polson
,
D. P.
Savin
, and
M. A.
Hayes
,
J. Microcolumn Sep.
12
,
98
106
(
2000
).
21.
J. R.
Pacheco
,
K. P.
Chen
, and
M. A.
Hayes
,
Electrophoresis
28
(
7
),
1027
1035
(
2007
).
22.
M. M.
Meighan
,
S. J.
Staton
, and
M. A.
Hayes
,
Electrophoresis
30
(
5
),
852
865
(
2009
).
23.
M. M.
Meighan
,
M. W.
Keebaugh
,
A. M.
Quihuis
,
S. M.
Kenyon
, and
M. A.
Hayes
,
Electrophoresis
30
(
21
),
3786
3792
(
2009
).
24.
S. M.
Kenyon
,
M. M.
Meighan
, and
M. A.
Hayes
,
Electrophoresis
32
(
5
),
482
493
(
2011
).
25.
M. M.
Meighan
,
J.
Vasquez
,
L.
Dziubcynski
,
S.
Hews
, and
M. A.
Hayes
,
Anal. Chem.
83
,
368
373
(
2011
).
26.
S. M.
Kenyon
,
N. G.
Weiss
, and
M. A.
Hayes
,
Electrophoresis
33
(
8
),
1227
1235
(
2012
).
27.
M. W.
Keebaugh
,
P.
Mahanti
, and
M. A.
Hayes
,
Electrophoresis
33
(
13
),
1924
1930
(
2012
).
28.
S. M.
Kenyon
,
M. W.
Keebaugh
, and
M. A.
Hayes
,
Electrophoresis
35
(
18
),
2551
2559
(
2014
).
29.
F.
Zhu
and
M. A.
Hayes
,
Electrophoresis
40
(
2
),
304
314
(
2019
).
30.
P.
Tabeling
,
Introduction to Microfluidics
(
Oxford University Press
,
2005
).
31.
D.
Giss
,
S.
Kemmerling
,
V.
Dandey
,
H.
Stahlberg
, and
T.
Braun
,
Anal. Chem.
86
(
10
),
4680
4687
(
2014
).
32.
N.
Mukhitov
,
J. M.
Spear
,
S. M.
Stagg
, and
M. G.
Roper
,
Anal. Chem.
88
(
1
),
629
634
(
2016
).
33.
S. A.
Arnold
,
S.
Albiez
,
A.
Bieri
,
A.
Syntychaki
,
R.
Adaixo
,
R. A.
McLeod
,
K. N.
Goldie
,
H.
Stahlberg
, and
T.
Braun
,
J. Struct. Biol.
197
(
3
),
220
226
(
2017
).
34.
X.
Feng
,
Z.
Fu
,
S.
Kaledhonkar
,
Y.
Jia
,
B.
Shah
,
A.
Jin
,
Z.
Liu
,
M.
Sun
,
B.
Chen
,
R. A.
Grassucci
,
Y.
Ren
,
H.
Jiang
,
J.
Frank
, and
Q.
Lin
,
Structure
25
(
4
),
663
670 e663
(
2017
).
35.
D.
Ashtiani
,
H.
Venugopal
,
M.
Belousoff
,
B.
Spicer
,
J.
Mak
,
A.
Neild
, and
A.
de Marco
,
J. Struct. Biol.
203
(
2
),
94
101
(
2018
).
36.
C. J.
Russo
and
L. A.
Passmore
,
Science
346
(
6215
),
1377
1380
(
2014
).
37.
S. A.
Arnold
,
S.
Albiez
,
N.
Opara
,
M.
Chami
,
C.
Schmidli
,
A.
Bieri
,
C.
Padeste
,
H.
Stahlberg
, and
T.
Braun
,
ACS Nano
10
(
5
),
4981
4988
(
2016
).
You do not currently have access to this content.