Skip to main content

Advertisement

Log in

Ensembles of change-point detectors: implications for real-time BMI applications

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Brain-machine interfaces (BMIs) have been widely used to study basic and translational neuroscience questions. In real-time closed-loop neuroscience experiments, many practical issues arise, such as trial-by-trial variability, and spike sorting noise or multi-unit activity. In this paper, we propose a new framework for change-point detection based on ensembles of independent detectors in the context of BMI application for detecting acute pain signals. Motivated from ensemble learning, our proposed “ensembles of change-point detectors” (ECPDs) integrate multiple decisions from independent detectors, which may be derived based on data recorded from different trials, data recorded from different brain regions, data of different modalities, or models derived from different learning methods. By integrating multiple sources of information, the ECPDs aim to improve detection accuracy (in terms of true positive and true negative rates) and achieve an optimal trade-off of sensitivity and specificity. We validate our method using computer simulations and experimental recordings from freely behaving rats. Our results have shown superior and robust performance of ECPDS in detecting the onset of acute pain signals based on neuronal population spike activity (or combined with local field potentials) recorded from single or multiple brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aminikhanghahi, S., & Cook, D.J. (2017). A survey of methods for time series change point detection. Knowledge Information Systems, 51(2), 339–367.

    Article  PubMed  Google Scholar 

  • Bushnell, M.C., Ceko, M., Low, L.A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nature Review Neuroscience, 14, 502–511.

    Article  CAS  Google Scholar 

  • Buzsaki, G., Anastassiou, C.A., Koch, C. (2012). The origin of extracellular fields and currents—EEG, ECoG, LFP, and spikes. Nature Reviews Neuroscience, 13, 407–420.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, Z. (Ed.). (2015). Advanced State Space Methods in Neural and Clinical Data. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chen, Z., & Wang, J. (2016). Statistical analysis of neuronal population codes for encoding acute pain. In Proceedings of IEEE ICASSP (pp. 829–833).

  • Chen, Z., Zhang, Q., Tong, A.P.S., Manders, T.R., Wang, J. (2017a). Deciphering neuronal population codes for acute thermal pain. Journal of Neural Engineering, 14(3), 036023.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen, Z., Hu, S., Zhang, Q., Wang, J. (2017b). Quickest detection for abrupt changes in neuronal ensemble spiking activity using model-based and model-free approaches. In Proceedings of 8th International IEEE/EMBS Conference on Neural Engineering (NER’17) (pp. 481–484).

  • Cheppudira, B.P. (2006). Characterization of hind paw licking and lifting to noxious radiant heat in the rat with and without chronic inflammation. Journal of Neuroscience Methods, 155, 122–125.

    Article  PubMed  Google Scholar 

  • Copits, B.A., Pullen, M.Y., Gereau R.W. IV. (2016). Spotlight on pain: optogenetic approaches for interrogating somatosensory circuits. Pain, 157, 2424–2433.

    Article  PubMed Central  PubMed  Google Scholar 

  • Daou, I., Tuttle, A.H., Longo, G., Wieskopf, J.S., Bonin, R.P., Ase, A.R., Wood, J.N., De Koninck, Y., Ribeiro-da Silva, A., Mogil, J.S., Sgula, P. (2013). Remote optogenetic activation and sensitization of pain pathways in freely moving mice. The Journal of Neuroscience, 33, 18631–18640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deuis, J.R., Dvorakova, L.S., Vetter, I. (2017). Methods used to evaluate pain behaviors in rodents. Frontiers in Molecular Neuroscience, 10, 284.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dietterich, T.G., & Roli, F. (2000). Ensemble methods in machine learning. In Gayar, N.E., & Kittler, J. (Eds.) Multiple Classifier Systems: Springer.

  • Fraser, G.W., Chase, S.M., Whitford, A., Schwartz, A.B. (2009). Control of a brain-computer interface without spike sorting. Journal of Neural Engineering, 6, 055004.

    Article  PubMed  Google Scholar 

  • Goodman, I.N., & Johnson, D.H. (2008). Information theoretic bounds on neural prosthesis effectiveness: The importance of spike sorting. In Proceedings of ICASSP’08 (pp. 5204–5207).

  • Gross, J., Schnitzler, A., Timmermann, L., Ploner, M. (2007). Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biology, 5, e133.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gu, L., Uhelski, M.L., Anand, S., Romero-Ortega, M., Kim, Y.T., Fuchs, P.N., Mohanty, S.K. (2015). Pain inhibition by optogenetic activation of specific anterior cingulate cortical neurons. PLoS ONE, 10, e0117746.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harris-Bozer, A.L., & Peng, Y.B. (2016). Inflammatory pain by carrageenan recruits low-frequency local field potential changes in the anterior cingulate cortex. Neuroscience Letters, 632, 8–14.

    Article  CAS  PubMed  Google Scholar 

  • Hu, S., Zhang, Q., Wang, J., Chen, Z. (2017). A real-time rodent neural interface for deciphering acute pain signals from neuronal ensemble spike activity. In Proceedings of 51st Asilomar Conference of Signals, Systems, and Computers (pp. 93–97).

  • Hu, S., Zhang, Q., Wang, J., Chen, Z. (2018). Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity. Journal of Neurophysiology, 149(4), 1394–1410.

    Article  Google Scholar 

  • Iyer, S.M., Vesuna, S., Ramakrishnan, C., Huynh, K., Young, S., Berndt, A., Lee, S.Y., Gorini, C.J., Deisseroth, K., Delp, S.L. (2016). Optogenetic and chemogenetic strategies for sustained inhibition of pain. Scientific Reports, 6, 30570.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaffe, A., Nadler, B., Kluger, Y. (2015). Estimating the accuracies of multiple classifiers without labeled data. In AISTAT’15.

  • Kittler, J., Hatef, M., Duin, R.P.W., Matas, J. (1998). On combining classifiers. IEEE Transactions of the Pattern Analysis of Machine Intelligence, 20(3), 226–239.

    Article  Google Scholar 

  • Kopepcke, L., Ashida, G., Kretzberg, J. (2016). Single and multiple change point detection in spike trains: comparison of different CUSUM, methods. Frontiers in Systems Neuroscience, 10, 51.

    Google Scholar 

  • Kuncheva, L.I. (2004). Combining pattern classifiers. Wiley: Methods and Algorithms.

    Book  Google Scholar 

  • Kuo, C.C., & Yen, C.T. (2005). Comparison of anterior cingulate and primary somatosensory neuronal responses to noxious laser-heat stimuli in conscious, behaving rats. Journal of Neurophysiology, 94, 1825–1836.

    Article  PubMed  Google Scholar 

  • Lee, M., Manders, T.R., Eberle, S.E., Su, C., D’amour, J., Yang, R., Lin, H.Y., Deisseroth, K., Froemke, R.C., Wang, J. (2015). Activation of corticostriatal circuitry relieves chronic neuropathic pain. Journal of Neuroscience, 35(13), 5247–5259.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., & Yao, X. (1999). Ensemble learning via negative correlation. Neural Networks, 12(10), 1399–1404.

    Article  CAS  PubMed  Google Scholar 

  • Macke, J.H., Buesing, L., Sahani, M. (2015). Estimating state and parameters in state space models of spike trains. In Chen, Z. (Ed.) Advanced State Space Methods in Neural and Clinical Data. Cambridge: Cambridge University Press.

  • Mallat, S. (2008). A Wavelet Tour of Signal Processing: the Sparse Way, 3rd edn. Cambridge: Academic Press.

    Google Scholar 

  • Parisi, F., Strino, F., Nadler, B., Kluger, Y. (2014). Ranking and combining multiple predictors without labeled data. Proceedings of the National Academy of Science USA, 111(4), 1253–1258.

    Article  CAS  Google Scholar 

  • Peng, W.W., Xia, X.L., Yi, M., Huang, G., Zhang, Z., Iannetti, G., Hu, L. (2017). Brain oscillations reflecting pain-related behavior in freely-moving rats. Pain, 159(1), 106–118.

    Article  PubMed Central  Google Scholar 

  • Perl, E.R. (2007). Ideas about pain, a historical view. Nature Reviews Neuroscience, 8, 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Pillow, J.W., Ahmadian, Y., Paninski, L. (2011). Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Computation, 23(1), 1–45.

    Article  PubMed  Google Scholar 

  • Raykar, V.C., Shipeng, Y., Zhao, L.H., Valdez, G.H., Florin, C., Bogoni, L., Moy, L. (2010). Learning with crowds. Journal of Machine Learning Research, 11, 1297–1322.

    Google Scholar 

  • Scholkopf, B., & Smola, A.J. (2001). Learning with kernels: Support vector machines regularization, Optimization, and Beyond. Cambridge: MIT Press.

    Google Scholar 

  • Taesler, P., & Rose, M. (2016). Prestimulus theta oscillations and connectivity modulate pain perception. Journal of Neuroscience, 36, 5026–5033.

    Article  CAS  PubMed  Google Scholar 

  • Urien, L., Xiao, Z., Dale, J., Bauer, E.P., Chen, Z., Wang, J. (2018). Rate and temporal coding mechanisms in the anterior cingulate cortex for pain anticipation. Scientific Reports, 8, 8298.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vierck, C.J., Whitsel, B.L., Favorov, O.V., Brown, A.W., Tommerdahl, M. (2013). Role of primary somatosensory cortex in the coding of pains. Pain, 154, 334–344.

    Article  PubMed  Google Scholar 

  • Vogt, B.A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. Nature Reviews Neuroscience, 6(7), 533–544.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie, Y., Huang, J., Willett, R. (2013). Change-point detection for high-dimensional time series with missing data. IEEE Journal of Selected Topics in Signal Processing, 7(1), 12–27.

    Article  CAS  Google Scholar 

  • Xu, J., & Brennan, T.J. (2011). The pathophysiology of acute pain: animal models. Current Opinion in Anaesthesiology, 24(5), 508–514.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, Y., Wang, N., Wang, J.-Y., Chang, J.-Y., Woodward, D.J., Luo, F. (2011). Ensemble encoding of nociceptive stimulus intensity in the rat medial and lateral pain systems. Molecular Pain, 7, 64.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, Q., Manders, T., Tong, A.P.S., Yang, R., Garg, A., Martinez, E., Zhou, H., Dale, J., Goyal, A., Urien, L., Yang, G., Chen, Z., Wang, J. (2017). Chronic pain induces generalized enhancement of aversion. eLife, 6, e25302.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, Q., Xiao, Z., Hu, S., Kulkarni, P., Martinez, E., Tong, A., Garg, A., Zhou, H., Chen, Z., Wang, J. (2018). Local field potential decoding of the onset and intensity of acute thermal pain in rats. Scientific Reports, 8, 8299.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Eric J. Robinson for English proofreading. The work was supported by the NSF-CRCNS grant IIS-130764 (Z.C.), NSF-NCS grant #1835000 (Z.C., J.W.), NIH grants R01-NS100016 (Z.C., J.W.), R01-MH118928 (Z.C.) and R01-GM115384 (J.W.), as well as the China’s Natural Science Foundation #31627802 and Fundamental Research Funds for the Central Universities (Y.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Jonathan Pillow

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Hu, S., Zhang, Q. et al. Ensembles of change-point detectors: implications for real-time BMI applications. J Comput Neurosci 46, 107–124 (2019). https://doi.org/10.1007/s10827-018-0694-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-018-0694-8

Keywords

Navigation