Skip to main content
Log in

A simple statistical-mechanical interpretation of Onsager reciprocal relations and Derjaguin theory of thermo-osmosis

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The application of a temperature gradient along a fluid-solid interface generates stresses in the fluid causing “thermo-osmotic” flow. Much of the understanding of this phenomenon is based on Derjaguin's work relating thermo-osmotic flows to the mechano-caloric effect, namely, the interfacial heat flow induced by a pressure gradient. This is done by using Onsager's reciprocity relationship for the equivalence of the thermo-osmotic and mechano-caloric cross-term transport coefficients. Both Derjaguin theory and Onsager framework for out-of-equilibrium systems are formulated in macroscopic thermodynamics terms and lack a clear interpretation at the molecular level. Here, we use statistical-mechanical tools to derive expressions for the transport cross-coefficients and, thereby, to directly demonstrate their equality. This is done for two basic models: i) an incopressible continuum solvent containing non-interacting solute particles, and ii) a single-component fluid without thermal expansivity. The derivation of the mechano-caloric coefficient appears to be remarkably simple, and provides a simple interpretation for the connection between interfacial heat and particle fluxes. We use this interpretation to consider yet another example, which is an electrolyte interacting with a uniformly charged surface in the strong screening (Debye-Hückel) regime.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Marbach, L. Bocquet, Chem. Soc. Rev. 48, 3102 (2019)

    Article  Google Scholar 

  2. S. Wall, Curr. Opin. Colloid Interface Sci. 15, 119 (2010)

    Article  Google Scholar 

  3. P. Bacchin, K. Glavatskiy, V. Gerbaud, Phys. Chem. Chem. Phys. 21, 10114 (2019)

    Article  Google Scholar 

  4. V.M. Barragán, S. Kjelstrup, J. Non-Equilib. Thermodyn. 42, 217 (2017)

    Article  ADS  Google Scholar 

  5. B. Derjaguin, N. Churaev, V. Muller, Surface Forces (Plenum, New York, 1987)

  6. H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)

    Article  ADS  Google Scholar 

  7. J. Imbrogno, G. Belfort, Annu. Rev. Chem. Biomol. Eng. 7, 29 (2016)

    Article  Google Scholar 

  8. H. Lodish, Molecular Cell Biology, 4th ed. (W.H. Freeman, New York, 2000)

  9. G. Lippmann, C. R. Acad. Sci. 145, 104 (1907)

    Google Scholar 

  10. L. Onsager, Phys. Rev. 37, 405 (1931)

    Article  ADS  Google Scholar 

  11. L. Onsager, Phys. Rev. 38, 2265 (1931)

    Article  ADS  Google Scholar 

  12. A.P. Bregulla et al., Phys. Rev. Lett. 116, 188303 (2016)

    Article  ADS  Google Scholar 

  13. R. Ganti, Y. Liu, D. Frenkel, Phys. Rev. Lett. 119, 038002 (2017)

    Article  ADS  Google Scholar 

  14. S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1969)

  15. A. Würger, Rep. Prog. Phys. 73, 126601 (2010)

    Article  ADS  Google Scholar 

  16. P. Anzini, G.M. Colombo, Z. Filiberti, A. Parola, Phys. Rev. Lett. 123, 028002 (2019)

    Article  ADS  Google Scholar 

  17. G.P. Beretta, E.P. Gyftopoulos, J. Chem. Phys. 121, 2718 (2004)

    Article  ADS  Google Scholar 

  18. J.L. Anderson, M.E. Lowell, D.C. Prieve, J. Fluid Mech. 117, 107 (1982)

    Article  ADS  Google Scholar 

  19. S. Fayolle, T. Bickel, A. Würger, Phys. Rev. E 77, 041404 (2008)

    Article  ADS  Google Scholar 

  20. O. Farago, Phys. Rev. E 99, 062108 (2019)

    Article  ADS  Google Scholar 

  21. R. Piazza, A. Parola, J. Phys.: Condens. Matter 20, 153102 (2008)

    ADS  Google Scholar 

  22. L. Fu, S. Merabia, L. Joly, Phys. Rev. Lett. 119, 214501 (2017)

    Article  ADS  Google Scholar 

  23. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, Berlin, 2007)

    Book  Google Scholar 

  24. H. Brenner, Chem. Eng. Sci. 16, 242 (1961)

    Article  Google Scholar 

  25. D. Andelman, in Handbook of Biological Physics, edited by R. Lipowsky, E. Sackmann, Vol. 1 (Elsevier Amsterdam, 1995) Chapt. 12

  26. S.N. Rasuli, R. Golestanian, Phys. Rev. Lett. 101, 108301 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Farago.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farago, O. A simple statistical-mechanical interpretation of Onsager reciprocal relations and Derjaguin theory of thermo-osmosis. Eur. Phys. J. E 42, 136 (2019). https://doi.org/10.1140/epje/i2019-11898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11898-3

Keywords

Navigation