Skip to main content
Log in

Endothelial Cells Exhibit Two Waves of P-selectin Surface Aggregation Under Endotoxic and Oxidative Conditions

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Sepsis is a clinical syndrome characterized by the presence of circulating microbial endotoxins and oxidative stress. Endotoxin and oxidative stress activate endothelial cells via a convergent signaling pathway (TLR4/MyD88/PI3 K/PLCɣ/NF-B) that stimulates both the transcription of SELP gene (which encodes for human P-selectin) and the release of P-selectin from Weibel–Palade bodies (WPBs). However, time course pattern of P-selectin surface aggregation has not been established in endothelial cells under 24 h of endotoxic or oxidative stress. Our study shows that P-selectin has at least two waves of aggregation at the cell surface: one 10 min and the other 12 h after endotoxic or oxidative stress. The first wave depends exclusively on WPB delivery to the cell membrane, while the second depends on P-selectin translation machinery, ER–Golgi sorting, and WPB surface delivery. Understanding adhesion molecule dynamics in endothelial cells could provide further molecular insights to develop diagnostic or therapeutic tools to aid in the management of sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

HUVEC:

Human umbilical vein endothelial cell

IL:

Interleukin

LPS:

Lipopolysaccharide

NF–B:

Nuclear factor–kappa B

PLCɣ:

Phospholipase C gamma

ROS:

Reactive oxygen species

TF:

Tissue factor

TLR4:

Toll-like receptor 4

TNF–⍺:

Tumor necrosis factor–⍺

vWF:

Von Willebrand Factor

WPB:

Weibel–Palade bodies

References

  1. Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paoli CJ, Reynolds MA, Sinha M et al (2018) Epidemiology and costs of sepsis in the United States—an analysis based on timing of diagnosis and severity level. Crit Care Med 46:1889–1897. https://doi.org/10.1097/CCM.0000000000003342

    Article  PubMed  PubMed Central  Google Scholar 

  3. Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369:840–851. https://doi.org/10.1056/NEJMra1208623

    Article  CAS  PubMed  Google Scholar 

  4. Dauphinee SM, Karsan A (2006) Lipopolysaccharide signaling in endothelial cells. Lab Invest 86:9–22. https://doi.org/10.1038/labinvest.3700366

    Article  CAS  PubMed  Google Scholar 

  5. Lewis AJ, Seymour CW, Rosengart MR (2016) Current murine models of sepsis. Surg Infect 17:385–393. https://doi.org/10.1089/sur.2016.021

    Article  Google Scholar 

  6. Echeverría C, Montorfano I, Tapia P et al (2014) Endotoxin-induced endothelial fibrosis is dependent on expression of transforming growth factors β1 and β2. Infect Immun 82:3678–3686. https://doi.org/10.1128/IAI.02158-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pérez L, Muñoz-Durango N, Riedel CA et al (2017) Endothelial-to-mesenchymal transition: cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev 33:41–54. https://doi.org/10.1016/j.cytogfr.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  8. Simon F, Fernández R (2009) Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells. J Hypertens 27:1202–1216. https://doi.org/10.1097/HJH.0b013e328329e31c

    Article  CAS  PubMed  Google Scholar 

  9. Nuñez-Villena F, Becerra A, Echeverría C et al (2011) Increased expression of the transient receptor potential melastatin 7 channel is critically involved in lipopolysaccharide-induced reactive oxygen species-mediated neuronal death. Antioxid Redox Signal 15:2425–2438. https://doi.org/10.1089/ars.2010.3825

    Article  CAS  PubMed  Google Scholar 

  10. Galley HF (2011) Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth 107:57–64. https://doi.org/10.1093/bja/aer093

    Article  CAS  PubMed  Google Scholar 

  11. Pan J, McEver RP (1995) Regulation of the human P-selectin promoter by Bcl-3 and specific homodimeric members of the NF-kappa B/Rel family. J Biol Chem 270:23077–23083

    Article  CAS  PubMed  Google Scholar 

  12. Gotsch U, Jäger U, Dominis M, Vestweber D (1994) Expression of P-selectin on endothelial cells is upregulated by LPS and TNF-alpha in vivo. Cell Adhes Commun 2:7–14. https://doi.org/10.1074/jbc.270.39.23077

    Article  CAS  PubMed  Google Scholar 

  13. McEver RP, Beckstead JH, Moore KL et al (1989) GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest 84:92–99. https://doi.org/10.1172/JCI114175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rollin S, Lemieux C, Maliba R et al (2004) VEGF-mediated endothelial P-selectin translocation: role of VEGF receptors and endogenous PAF synthesis. Blood 103:3789–3797. https://doi.org/10.1182/blood-2003-07-2272

    Article  CAS  PubMed  Google Scholar 

  15. Kiskin NI, Babich V, Knipe L et al (2014) Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane. PLoS ONE 9:e108093. https://doi.org/10.1371/journal.pone.0108093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Babich V, Meli A, Knipe L et al (2008) Selective release of molecules from Weibel-Palade bodies during a lingering kiss. Blood 111:5282–5290. https://doi.org/10.1182/blood-2007-09-113746

    Article  CAS  PubMed  Google Scholar 

  17. Nightingale TD, McCormack JJ, Grimes W et al (2018) Tuning the endothelial response: differential release of exocytic cargos from Weibel-Palade bodies. J Thromb Haemost 16:1873–1886. https://doi.org/10.1111/jth.14218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lorenzon P, Vecile E, Nardon E et al (1998) Endothelial cell E- and P-selectin and vascular cell adhesion molecule-1 function as signaling receptors. J Cell Biol 142:1381–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen X, Cheng Z, Werling D et al (2016) Bovine P-selectin mediates leukocyte adhesion and is highly polymorphic in dairy breeds. Res Vet Sci 108:85–92. https://doi.org/10.1016/j.rvsc.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  20. Grooby WL, Krishnan R, Russ GR (1997) Characterization of ovine umbilical vein endothelial cells and their expression of cell adhesion molecules: comparative study with human endothelial cells. Immunol Cell Biol 75:21–28. https://doi.org/10.1038/icb.1997.4

    Article  CAS  PubMed  Google Scholar 

  21. Doré M, Sirois J (1996) Regulation of P-selectin expression by inflammatory mediators in canine jugular endothelial cells. Vet Pathol 33:662–671. https://doi.org/10.1177/030098589603300605

    Article  PubMed  Google Scholar 

  22. Stocker CJ, Sugars KL, Harari OA et al (2000) TNF-alpha, IL-4, and IFN-gamma regulate differential expression of P- and E-selectin expression by porcine aortic endothelial cells. J Immunol 164:3309–3315

    Article  CAS  PubMed  Google Scholar 

  23. Yao L, Setiadi H, Xia L et al (1999) Divergent inducible expression of P-selectin and E-selectin in mice and primates. Blood 94:3820–3828

    Article  CAS  PubMed  Google Scholar 

  24. Vischer UM, Wagner DD (1993) CD63 is a component of Weibel-Palade bodies of human endothelial cells. Blood 82:1184–1191

    Article  CAS  PubMed  Google Scholar 

  25. Metcalf DJ, Nightingale TD, Zenner HL et al (2008) Formation and function of Weibel-Palade bodies. J Cell Sci 121:19–27. https://doi.org/10.1242/jcs.03494

    Article  CAS  PubMed  Google Scholar 

  26. Cerny J, Feng Y, Yu A et al (2004) The small chemical vacuolin-1 inhibits Ca(2 +)-dependent lysosomal exocytosis but not cell resealing. EMBO Rep 5:883–888. https://doi.org/10.1038/sj.embor.7400243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang K, Wang P, Huang S et al (2014) Different mechanism of LPS-induced calcium increase in human lung epithelial cell and microvascular endothelial cell: a cell culture study in a model for ARDS. Mol Biol Rep 41:4253–4259. https://doi.org/10.1007/s11033-014-3296-1

    Article  CAS  PubMed  Google Scholar 

  28. González-Pacheco FR, Caramelo C, Castilla MA et al (2002) Mechanism of vascular smooth muscle cells activation by hydrogen peroxide: role of phospholipase C gamma. Nephrol Dial Transplant 17:392–398

    Article  PubMed  Google Scholar 

  29. Echeverría C, Montorfano I, Hermosilla T et al (2014) Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity. PLoS ONE 9:e94146. https://doi.org/10.1371/journal.pone.0094146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sarmiento D, Montorfano I, Cáceres M et al (2014) Endotoxin-induced vascular endothelial cell migration is dependent on TLR4/NF-κB pathway, NAD(P)H oxidase activation, and transient receptor potential melastatin 7 calcium channel activity. Int J Biochem Cell Biol 55:11–23. https://doi.org/10.1016/j.biocel.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  31. Parthasarathi K, Ichimura H, Monma E et al (2006) Connexin 43 mediates spread of Ca2 + -dependent proinflammatory responses in lung capillaries. J Clin Invest 116:2193–2200. https://doi.org/10.1172/JCI26605

    Article  PubMed  PubMed Central  Google Scholar 

  32. Burgazli KM, Venker CJ, Mericliler M et al (2014) Importance of large conductance calcium-activated potassium channels (BKCa) in interleukin-1b-induced adhesion of monocytes to endothelial cells. Eur Rev Med Pharmacol Sci 18:646–656

    CAS  PubMed  Google Scholar 

  33. Neri T, Pergoli L, Petrini S et al (2016) Particulate matter induces prothrombotic microparticle shedding by human mononuclear and endothelial cells. Toxicol In Vitro 32:333–338. https://doi.org/10.1016/j.tiv.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  34. Birch KA, Pober JS, Zavoico GB et al (1992) Calcium/calmodulin transduces thrombin-stimulated secretion: studies in intact and minimally permeabilized human umbilical vein endothelial cells. J Cell Biol 118:1501–1510

    Article  CAS  PubMed  Google Scholar 

  35. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14. https://doi.org/10.1016/j.molcel.2007.03.016

    Article  CAS  PubMed  Google Scholar 

  36. Lu Y-C, Yeh W-C, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151. https://doi.org/10.1016/j.cyto.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  37. Echeverría C, Montorfano I, Sarmiento D et al (2013) Lipopolysaccharide induces a fibrotic-like phenotype in endothelial cells. J Cell Mol Med 17:800–814. https://doi.org/10.1111/jcmm.12066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Into T, Kanno Y, Dohkan J-I et al (2007) Pathogen recognition by Toll-like receptor 2 activates Weibel-Palade body exocytosis in human aortic endothelial cells. J Biol Chem 282:8134–8141. https://doi.org/10.1074/jbc.M609962200

    Article  CAS  PubMed  Google Scholar 

  39. Stottmeier B, Dick TP (2016) Redox sensitivity of the MyD88 immune signaling adapter. Free Radic Biol Med 101:93–101. https://doi.org/10.1016/j.freeradbiomed.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  40. Montorfano I, Becerra A, Cerro R et al (2014) Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-β1 and TGF-β2-dependent pathway. Lab Invest 94:1068–1082. https://doi.org/10.1038/labinvest.2014.100

    Article  CAS  PubMed  Google Scholar 

  41. Sarmiento D, Montorfano I, Cerda O et al (2015) Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel. Microvas Res 98:187–196. https://doi.org/10.1016/j.mvr.2014.02.001

    Article  CAS  Google Scholar 

  42. Zhang K, Wang P, Huang S et al (2014) Different mechanism of LPS-induced calcium increase in human lung epithelial cell and microvascular endothelial cell: a cell culture study in a model for ARDS. Mol Biol Rep 41:4253–4259. https://doi.org/10.1007/s11033-014-3296-1

    Article  CAS  PubMed  Google Scholar 

  43. Hickey MJ, Kanwar S, McCafferty DM et al (1999) Varying roles of E-selectin and P-selectin in different microvascular beds in response to antigen. J Immunol 162:1137–1143

    CAS  PubMed  Google Scholar 

  44. Harari OA, McHale JF, Marshall D et al (1999) Endothelial cell E- and P-selectin up-regulation in murine contact sensitivity is prolonged by distinct mechanisms occurring in sequence. J Immunol 163:6860–6866

    CAS  PubMed  Google Scholar 

  45. Eppihimer MJ, Wolitzky B, Anderson DC et al (1996) Heterogeneity of expression of E- and P-selectins in vivo. Circ Res 79:560–569. https://doi.org/10.1161/01.res.79.3.560

    Article  CAS  PubMed  Google Scholar 

  46. Ishiwata N, Takio K, Katayama M et al (1994) Alternatively spliced isoform of P-selectin is present in vivo as a soluble molecule. J Biol Chem 269:23708–23715

    CAS  PubMed  Google Scholar 

  47. Chen AY, Ha JN, DeLano FA, Schmid-Schönbein GW (2012) Receptor cleavage and P-selectin-dependent reduction of leukocyte adhesion in the spontaneously hypertensive rat. J Leukoc Biol 92:183–194. https://doi.org/10.1189/jlb.0112010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tchernychev B, Furie B, Furie BC (2003) Peritoneal macrophages express both P-selectin and PSGL-1. J Cell Biol 163:1145–1155. https://doi.org/10.1083/jcb.200310079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jilma B, Blann A, Pernerstorfer T et al (1999) Regulation of adhesion molecules during human endotoxemia. No acute effects of aspirin. Am J Respir Crit Care Med 159:857–863. https://doi.org/10.1164/ajrccm.159.3.9805087

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from Fondo Nacional de Desarrollo Científico y Tecnológico—FONDECYT 1161288, and 1161646, Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) PhD Scholarship 21171566, Millennium Institute on Immunology and Immunotherapy P09-016-F. Programa de Cooperación Científica ECOS-CONICYT C16S02. BASAL Grant CEDENNA FB0807. The Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD) is a Millennium Nucleus supported by the Iniciativa Científica Milenio of the Ministry of Economy, Development and Tourism (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Simon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrionuevo, N., Gatica, S., Olivares, P. et al. Endothelial Cells Exhibit Two Waves of P-selectin Surface Aggregation Under Endotoxic and Oxidative Conditions. Protein J 38, 667–674 (2019). https://doi.org/10.1007/s10930-019-09865-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09865-0

Keywords

Navigation