Skip to main content
Log in

Interaction of a Model Hydrophobic Drug Dimethylcurcumin with Albumin Nanoparticles

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The aim of present study was to investigate the binding interactions of a model hydrophobic molecule, dimethylcurcumin (DMC) with nanoparticle form of bovine serum albumin (BSA) using fluorescence spectroscopy techniques. For this, BSA nanoparticles (size = 62.0 ± 3.5 nm, molecular weight = 11,243 ± 3445 kD) prepared by thermal denaturation method was mixed with DMC in solution and monitored for fluorescence emission of tryptophan (Trp) residue as well as DMC separately. The emission maximum of DMC in nanoparticles form exhibited more blue sift and quenched the excited state of tryptophan (Trp) by six fold higher than in the native form of BSA. By analyzing Trp fluorescence, the mean binding constant (K) estimated for the interaction of DMC with native and nanoparticles forms of BSA was 2.7 ± 0.4 × 104 M−1 and 1.5 ± 0.5 × 105 M−1 respectively. Together these results suggested that DMC experienced a more rigid environment in nanoparticles than in native form of BSA. Additionally the above determined K values were in agreement with those reported previously by absorption techniques. Further direct energy transfer was observed between Trp and DMC, using which the distance (r) calculated between them was 28.25 ± 0.27 Ǻ in BSA native. Similar analysis involving BSA nanoparticle and DMC revealed a distance of 24.25 ± 1.05 Ǻ between the hydrophobic core and the ligand. Finally interaction of DMC with BSA was validated through molecular docking studies, which indicated sub-domain IIA as the binding site of DMC. Thus it is concluded that intrinsic fluorescence of protein can be utilized to study the interaction of its different physical forms with any hydrophobic ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Joye IJ, McClements DJ (2016) Curr Top Med Chem 16(9):1026–1039

    Article  CAS  PubMed  Google Scholar 

  2. Joye IJ, McClements DJ (2014) Curr Opin Colloid Interface Sci 19(5):417–427

    Article  CAS  Google Scholar 

  3. Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) Biomed Res Int. 2014:Article ID 180549. (https://doi.org/10.1155/2014/180549)

    Article  Google Scholar 

  4. Corradini MG, Demol M, Boeve J, Ludescher RD, Joye IJ (2017) Food Biophys 12(2):211–221

    Article  Google Scholar 

  5. Kim Y, Ko SM, Nam JM (2016) Asian J Chem 11(13):1869–1877

    Article  CAS  Google Scholar 

  6. Curry S (2009) Drug Metab Pharmacokinet 24(4):342–357

    Article  CAS  PubMed  Google Scholar 

  7. Kratochwil NA, Huber W, Müller F, Kansy M, Gerber PR (2002) Biochem Pharmacol 64(9):1355–1374

    Article  CAS  PubMed  Google Scholar 

  8. Roy S (2016) J Pharm Toxicol Stud 4(2):7–17

    CAS  Google Scholar 

  9. Bronze-Uhle ES, Costa BC, Ximenes VF, Lisboa-Filho PN (2016) Nanotechnol Sci Appl 10:11–21

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yu Z, Yu M, Zhang Z, Hong G, Xiong Q (2014) Nanoscale Res Lett 9(1):343–350

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miele E, Spinelli PG, Miele E, Tomao F, Tomao S (2009) Int J Nanomed 4(7):99–105

    CAS  Google Scholar 

  12. Nicolas LF, Chubukov V, Clark LA, Brown S, Teresa HG (2005) Protein Sci 14(4):993–1003

    Article  Google Scholar 

  13. Langer K, Balthasar S, Vogel V, Dinauer N, Briesen HV, Schubert D (2003) Int J Pharm 257(1):169–180

    Article  CAS  PubMed  Google Scholar 

  14. Das RP, Singh BG, Kunwar A, Ramani MV, Subbaraju GV, Hassan PA, Priyadarsini KI (2017) Colloids Surf B 158:682–688

    Article  CAS  Google Scholar 

  15. Fanciullino R, Ciccolini J, Milano G (2013) Crit Rev Oncol Hematol 88(3):504–613

    Article  PubMed  Google Scholar 

  16. Yan YI, Marriott G (2003) Curr Opin Chem Biol 7(5):635–640

    Article  CAS  PubMed  Google Scholar 

  17. Ghisaidoobe AB, Chung SJ (2014) Int J Mol Sci 15(12):22518–22538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee MM, Peterson BR (2016) ACS Omega 1(6):1266–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kocaadam B, Şanlier N (2017) Crit Rev Food Sci Nutr 57(13):2889–2895

    Article  CAS  PubMed  Google Scholar 

  20. Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R (2013) Curr Neuropharmacol 11(4):338–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barik A, Priyadarsini KI (2013) Spectrochim Acta A 105:267–272

    Article  CAS  Google Scholar 

  22. Banerjee M, Chakravarty D, Ballal A (2015) BMC Plant Biol 15(16):1–17

    Google Scholar 

  23. James NG, Jameson DM (2014) Methods Mol Biol 1076(3):29–42

    Article  CAS  PubMed  Google Scholar 

  24. Li CVJ, Wowor AJ (2008) Methods Cell Biol 84(7):243–262

    Google Scholar 

  25. Fruhwirth GO, Ameer-Beg S, Cook R, Watson T, Tony N, Festy F (2010) Opt Express 18(11):11148–11158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walsh AJ, Sharick JT, Skala MC, Beier HT (2016) Biomed Opt Express 7(4):1385–1399

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vakser IA (2014) Biophys J 107(8):1785–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  29. Raut S, Chib R, Butler S, Borejdo J, Gryczynski Z, Gryczynskic I (2014) Methods Appl Fluoresc 2(3):1–8

    Article  Google Scholar 

  30. Sahoo B, Balaji J, Nag S, Kaushalya SK, Maiti S (2008) J Chem Phys 129(7):075103

    Article  PubMed  Google Scholar 

  31. Lindgren M, Sörgjerd K, Hammarström P (2005) Biophys J 88(6):4200–4212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bong PH (2000) Bull Korean Chem Soc 21(1):81–86

    CAS  Google Scholar 

  33. Mariam J, Sivakami S, Dongre PM (2016) Drug Deliv 23(8):2668–2676

    CAS  PubMed  Google Scholar 

  34. Shaikh SAM, Singh BG, Barik A, Ramani MV, Balaji NV, Subbaraju GV, Naik DB, Priyadarsini KI (2018) Spectrochim Acta A 199:394–402

    Article  CAS  Google Scholar 

  35. Shi JH, Pan DQ, Jiang M, Liu TT, Wang Q (2016) J Photochem Photobiol B 164(8):103–111

    Article  CAS  PubMed  Google Scholar 

  36. Kastritis PL, Bonvin AMJJ, Soc JR (2013) Interface 10(79):20120835

    PubMed  Google Scholar 

Download references

Funding

N/A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. G. Singh or A. Kunwar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

N/A.

Research Involving Human Participants or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R.P., Singh, B.G., Kunwar, A. et al. Interaction of a Model Hydrophobic Drug Dimethylcurcumin with Albumin Nanoparticles. Protein J 38, 649–657 (2019). https://doi.org/10.1007/s10930-019-09866-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09866-z

Keywords

Navigation