Skip to main content
Log in

Rotenone protects against β-cell apoptosis and attenuates type 1 diabetes mellitus

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Type 1 diabetes mellitus (T1DM) is caused by pancreatic β-cell dysfunction and apoptosis, with consequent severe insulin deficiency. Thus, β-cell protection may be a primary target in the treatment of T1DM. Evidence has demonstrated that defective mitochondrial function plays an important role in pancreatic β-cell dysfunction and apoptosis; however, the fundamental effect of mitochondrial complex I action on β-cells and T1DM remains unclear. In the current study, the pancreas protective effect of complex I inhibitor rotenone (ROT) and its potential mechanism were assessed in a streptozotocin (STZ)-induced mouse model of T1DM and in cultured mouse pancreatic β-cell line, Min6. ROT treatment exerted a hypoglycemic effect, restored the insulin level, and decreased inflammation and cell apoptosis in the pancreas. In vitro experiments also showed that ROT decreased STZ- and inflammatory cytokines-induced β-cell apoptosis. These protective effects were accompanied by attenuation of reactive oxygen species, increased mitochondrial membrane potential, and upregulation of transcriptional coactivator PPARα coactivator 1α (PGC-1α)-controlled mitochondrial biogenesis. These findings suggest that mitochondrial complex I inhibition may represent a promising strategy for β-cell protection in T1DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chiang JL, Kirkman MS, Laffel LM, Peters AL, Sourcebook A (2014) Type 1 diabetes. Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care 37(7):2034–2054. https://doi.org/10.2337/dc14-1140

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293):1293–1300. https://doi.org/10.1038/nature08933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Supale S, Li N, Brun T, Maechler P (2012) Mitochondrial dysfunction in pancreatic beta cells. Trends Endocrinol Metab 23(9):477–487. https://doi.org/10.1016/j.tem.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  4. Lee JW, Kim WH, Lim JH, Song EH, Song J, Choi KY, Jung MH (2009) Mitochondrial dysfunction: glucokinase downregulation lowers interaction of glucokinase with mitochondria, resulting in apoptosis of pancreatic beta-cells. Cell Signal 21(1):69–78. https://doi.org/10.1016/j.cellsig.2008.09.015

    Article  CAS  PubMed  Google Scholar 

  5. Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen YH, Kang TM, Yoon KH, Kim JW, Jeong YT, Han MS, Lee MK, Kim KW, Shin J, Lee MS (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8(4):318–324. https://doi.org/10.1016/j.cmet.2008.08.013

    Article  CAS  PubMed  Google Scholar 

  6. Nishikawa T, Araki E (2007) Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9(3):343–353. https://doi.org/10.1089/ars.2007.9.ft-19

    Article  CAS  PubMed  Google Scholar 

  7. Gurzov EN, Eizirik DL (2011) Bcl-2 proteins in diabetes: mitochondrial pathways of beta-cell death and dysfunction. Trends Cell Biol 21(7):424–431. https://doi.org/10.1016/j.tcb.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  8. Raza H, Prabu SK, John A, Avadhani NG (2011) Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats. Int J Mol Sci 12(5):3133–3147. https://doi.org/10.3390/ijms12053133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37(6):755–767. https://doi.org/10.1016/j.freeradbiomed.2004.05.034

    Article  CAS  PubMed  Google Scholar 

  10. Gerber PA, Rutter GA (2017) The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal 26(10):501–518. https://doi.org/10.1089/ars.2016.6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277(47):44784–44790. https://doi.org/10.1074/jbc.M207217200

    Article  CAS  PubMed  Google Scholar 

  12. Xu X, Arriaga EA (2009) Qualitative determination of superoxide release at both sides of the mitochondrial inner membrane by capillary electrophoretic analysis of the oxidation products of triphenylphosphonium hydroethidine. Free Radic Biol Med 46(7):905–913. https://doi.org/10.1016/j.freeradbiomed.2008.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bleier L, Wittig I, Heide H, Steger M, Brandt U, Drose S (2015) Generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med 78:1–10. https://doi.org/10.1016/j.freeradbiomed.2014.10.511

    Article  CAS  PubMed  Google Scholar 

  14. Xiong N, Long X, Xiong J, Jia M, Chen C, Huang J, Ghoorah D, Kong X, Lin Z, Wang T (2012) Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models. Crit Rev Toxicol 42(7):613–632. https://doi.org/10.3109/10408444.2012.680431

    Article  CAS  PubMed  Google Scholar 

  15. Hou WL, Yin J, Alimujiang M, Yu XY, Ai LG, Bao YQ, Liu F, Jia WP (2018) Inhibition of mitochondrial complex I improves glucose metabolism independently of AMPK activation. J Cell Mol Med 22(2):1316–1328. https://doi.org/10.1111/jcmm.13432

    Article  CAS  PubMed  Google Scholar 

  16. Ai Q, Jing Y, Jiang R, Lin L, Dai J, Che Q, Zhou D, Jia M, Wan J, Zhang L (2014) Rotenone, a mitochondrial respiratory complex I inhibitor, ameliorates lipopolysaccharide/D-galactosamine-induced fulminant hepatitis in mice. Int Immunopharmacol 21(1):200–207. https://doi.org/10.1016/j.intimp.2014.04.028

    Article  CAS  PubMed  Google Scholar 

  17. Yin J, Xia W, Wu M, Zhang Y, Huang S, Zhang A, Jia Z (2019) Inhibition of mitochondrial complex I activity attenuates neointimal hyperplasia by inhibiting smooth muscle cell proliferation and migration. Chem Biol Interact 304:73–82. https://doi.org/10.1016/j.cbi.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  18. Hua H, Ge X, Wu M, Zhu C, Chen L, Yang G, Zhang Y, Huang S, Zhang A, Jia Z (2018) Rotenone protects against acetaminophen-induced kidney injury by attenuating oxidative stress and inflammation. Kidney Blood Press Res 43(4):1297–1309. https://doi.org/10.1159/000492589

    Article  CAS  PubMed  Google Scholar 

  19. Ding W, Xu C, Wang B, Zhang M (2015) Rotenone attenuates renal injury in aldosterone-infused rats by inhibiting oxidative stress, mitochondrial dysfunction, and inflammasome activation. Med Sci Monit 21:3136–3143. https://doi.org/10.1038/nature08933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun Y, Zhang Y, Zhao D, Ding G, Huang S, Zhang A, Jia Z (2014) Rotenone remarkably attenuates oxidative stress, inflammation, and fibrosis in chronic obstructive uropathy. Mediators Inflamm 2014:670106. https://doi.org/10.1155/2014/670106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang W, Sha Y, Wei K, Wu C, Ding D, Yang Y, Zhu C, Zhang Y, Ding G, Zhang A, Jia Z, Huang S (2018) Rotenone ameliorates chronic renal injury caused by acute ischemia/reperfusion. Oncotarget 9(36):24199–24208. https://doi.org/10.18632/oncotarget.24733

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang A, Jia Z, Wang N, Tidwell TJ, Yang T (2011) Relative contributions of mitochondria and NADPH oxidase to deoxycorticosterone acetate-salt hypertension in mice. Kidney Int 80(1):51–60. https://doi.org/10.1038/ki.2011.29

    Article  CAS  PubMed  Google Scholar 

  23. Ozay EI, Sherman HL, Mello V, Trombley G, Lerman A, Tew GN, Yadava N, Minter LM (2018) Rotenone treatment reveals a role for electron transport complex I in the subcellular localization of key transcriptional regulators during T helper cell differentiation. Front Immunol 9:1284. https://doi.org/10.3389/fimmu.2018.01284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  25. Johnson ME, Bobrovskaya L (2015) An update on the rotenone models of Parkinson's disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology 46:101–116. https://doi.org/10.1016/j.neuro.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  26. Heinz S, Freyberger A, Lawrenz B, Schladt L, Schmuck G, Ellinger-Ziegelbauer H (2017) Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation. Sci Rep 7:45465. https://doi.org/10.1038/srep45465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson's disease. NeuroRx 2(3):484–494. https://doi.org/10.1602/neurorx.2.3.484

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci 23(34):10756–10764. https://doi.org/10.1523/JNEUROSCI.23-34-10756.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Greenamyre JT, Betarbet R, Sherer TB (2003) The rotenone model of Parkinson's disease: genes, environment and mitochondria. Parkinsonism Relat Disord 9(Suppl 2):S59–S64. https://doi.org/10.1016/S1353-8020(03)00023-3

    Article  PubMed  Google Scholar 

  30. Furman BL (2015) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 70:5 47 41 – 20. https://doi.org/10.1002/0471141755.ph0547s70

    Article  PubMed  Google Scholar 

  31. Zhang H, Gong G, Wang P, Zhang Z, Kolwicz SC, Rabinovitch PS, Tian R, Wang W (2018) Heart specific knockout of Ndufs4 ameliorates ischemia reperfusion injury. J Mol Cell Cardiol 123:38–45. https://doi.org/10.1016/j.yjmcc.2018.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ling S, Shan Q, Liu P, Feng T, Zhang X, Xiang P, Chen K, Xie H, Song P, Zhou L, Liu J, Zheng S, Xu X (2017) Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I. Cell Death Dis 8(11):e3159. https://doi.org/10.1038/cddis.2017.482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mulder H (2017) Transcribing beta-cell mitochondria in health and disease. Mol Metab 6(9):1040–1051. https://doi.org/10.1016/j.molmet.2017.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li PA, Hou X, Hao S (2017) Mitochondrial biogenesis in neurodegeneration. J Neurosci Res 95(10):2025–2029. https://doi.org/10.1002/jnr.24042

    Article  CAS  PubMed  Google Scholar 

  35. Scarpulla RC (2002) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576(1–2):1–14. https://doi.org/10.1016/s0167-4781(02)00343-3

    Article  CAS  PubMed  Google Scholar 

  36. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273. https://doi.org/10.1038/ng1180

    Article  CAS  PubMed  Google Scholar 

  37. Leonard S, Tobin LM, Findlay JB (2017) The signalling mechanisms of a novel mitochondrial complex I inhibitor prevent lipid accumulation and attenuate TNF-alpha-induced insulin resistance in vitro. Eur J Pharmacol 800:1–8. https://doi.org/10.1016/j.ejphar.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  38. Wu M, Li S, Yu X, Chen W, Ma H, Shao C, Zhang Y, Zhang A, Huang S, Jia Z (2019) Mitochondrial activity contributes to impaired renal metabolic homeostasis and renal pathology in STZ-induced diabetic mice. Am J Physiol Renal Physiol. https://doi.org/10.1152/ajprenal.00076.2019

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yuan S, Liu X, Zhu X, Qu Z, Gong Z, Li J, Xiao L, Yang Y, Liu H, Sun L, Liu F (2018) The role of TLR4 on PGC-1alpha-mediated oxidative stress in tubular cell in diabetic kidney disease. Oxid Med Cell Longev 2018:6296802. https://doi.org/10.1155/2018/6296802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma S, Feng J, Zhang R, Chen J, Han D, Li X, Yang B, Li X, Fan M, Li C, Tian Z, Wang Y, Cao F (2017) SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid Med Cell Longev 2017:4602715. https://doi.org/10.1155/2017/4602715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rowe GC, Raghuram S, Jang C, Nagy JA, Patten IS, Goyal A, Chan MC, Liu LX, Jiang A, Spokes KC, Beeler D, Dvorak H, Aird WC, Arany Z (2014) PGC-1alpha induces SPP1 to activate macrophages and orchestrate functional angiogenesis in skeletal muscle. Circ Res 115(5):504–517. https://doi.org/10.1161/CIRCRESAHA.115.303829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation (Nos. 81800599, 81830020, 81873599, 81600352, 81670678, 81530023), the Natural Science Foundation of Jiangsu Province (No. BK20180145), the China Postdoctoral Science Foundation (No. 2018M632342) and Nanjing City Key Medical Research Project (No. ZKX18039).

Author information

Authors and Affiliations

Authors

Contributions

Z.J., Y. Z., S.H., and A.Z coordinated and oversaw the study. M.W., W.C., and S.Z. performed the experiments, collected the samples, and analyzed the data. M.W., Y. Z., and Z.J. wrote the manuscript.

Corresponding authors

Correspondence to Yue Zhang or Zhanjun Jia.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

All animal experiments are in accordance with International Guidelines and Protocols and approved by the Nanjing Medical University Institutional Animal Care and Use Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Chen, W., Zhang, S. et al. Rotenone protects against β-cell apoptosis and attenuates type 1 diabetes mellitus. Apoptosis 24, 879–891 (2019). https://doi.org/10.1007/s10495-019-01566-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-019-01566-4

Keywords

Navigation