Skip to main content

Advertisement

Log in

Strategies for the use of Extracellular Vesicles for the Delivery of Therapeutics

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are nanosized, membrane-bound vesicles released from eukaryotic and prokaryotic cells that can transport cargo containing DNA, RNA, lipids and proteins, between cells as a means of intercellular communication. Although EVs were initially considered to be cellular debris deprived of any essential biological functions, emerging literature highlights the critical roles of EVs in the context of intercellular signaling, maintenance of tissue homeostasis, modulation of immune responses, inflammation, cancer progression, angiogenesis, and coagulation under both physiological and pathological states. Based on the ability of EVs to shuttle proteins, lipids, carbohydrates, mRNAs, long non-coding RNAs (lncRNAs), microRNAs, chromosomal DNA, and mitochondrial DNA into target cells, the presence and content of EVs in biofluids have been exploited for biomarker research in the context of diagnosis, prognosis and treatment strategies. Additionally, owing to the characteristics of EVs such as stability in circulation, biocompatibility as well as low immunogenicity and toxicity, these vesicles have become attractive systems for the delivery of therapeutics. More recently, EVs are increasingly being exploited as conduits for delivery of therapeutics for anticancer strategies, immunomodulation, targeted drug delivery, tissue regeneration, and vaccination. In this review, we highlight and discuss the multiple strategies that are employed for the use of EVs as delivery vehicles for therapeutic agents, including the potential advantages and challenges involved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aatonen MT, Ohman T, Nyman TA, Laitinen S, Gronholm M, Siljander PR (2014) Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles 3.

  • Abdel-Haq H (2019) Blood exosomes as a tool for monitoring treatment efficacy and progression of neurodegenerative diseases. Neural Regen Res 14:72–74

    PubMed  PubMed Central  Google Scholar 

  • Aghabozorgi AS, Ahangari N, Eftekhaari TE, Torbati PN, Bahiraee A, Ebrahimi R, Pasdar A (2019) Circulating exosomal miRNAs in cardiovascular disease? New emerging hopes. J Cell Physiol, Pathogenesis

    Google Scholar 

  • Agrahari V, Agrahari V, Burnouf PA, Chew CH, Burnouf T (2019) Extracellular Microvesicles as New Industrial Therapeutic Frontiers. Trends Biotechnol

  • Altanerova U, Babincova M, Babinec P, Benejova K, Jakubechova J, Altanerova V, Zduriencikova M, Repiska V, Altaner C (2017) Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia. Int J Nanomedicine 12:7923–7936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    CAS  PubMed  Google Scholar 

  • Andaloussi SEL, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

    Google Scholar 

  • Antimisiaris SG, Mourtas S, Marazioti A (2018) Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery Pharmaceutics 10.

  • Arnold PY, Mannie MD (1999) Vesicles bearing MHC class II molecules mediate transfer of antigen from antigen-presenting cells to CD4+ T cells. Eur J Immunol 29:1363–1373

    CAS  PubMed  Google Scholar 

  • Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10:301–312

    CAS  PubMed  Google Scholar 

  • Banizs AB, Huang T, Dryden K, Berr SS, Stone JR, Nakamoto RK, Shi W, He J (2014) In vitro evaluation of endothelial exosomes as carriers for small interfering ribonucleic acid delivery. Int J Nanomedicine 9:4223–4230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barok M, Puhka M, Vereb G, Szollosi J, Isola J, Joensuu H (2018) Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation. BMC Cancer 18:504

    PubMed  PubMed Central  Google Scholar 

  • Beauvillain C, Juste MO, Dion S, Pierre J, Dimier-Poisson I (2009) Exosomes are an effective vaccine against congenital toxoplasmosis in mice. Vaccine 27:1750–1757

    CAS  PubMed  Google Scholar 

  • Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. Cancer Cell 30:836–848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellavia D, Raimondo S, Calabrese G, Forte S, Cristaldi M, Patinella A, Memeo L, Manno M, Raccosta S, Diana P, Cirrincione G, Giavaresi G, Monteleone F, Fontana S, De Leo G, Alessandro R (2017) Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo Chronic Myelogenous Leukemia cell growth. Theranostics 7:1333–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Besse B et al (2016) Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5:e1071008

    PubMed  Google Scholar 

  • Braun RK, Chetty C, Balasubramaniam V, Centanni R, Haraldsdottir K, Hematti P, Eldridge MW (2018) Intraperitoneal injection of MSC-derived exosomes prevent experimental bronchopulmonary dysplasia. Biochem Biophys Res Commun 503:2653–2658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brites D, Fernandes A (2015) Neuroinflammation and Depression: Microglia Activation, Extracellular Microvesicles and microRNA Dysregulation. Front Cell Neurosci 9:476

    PubMed  PubMed Central  Google Scholar 

  • Bryniarski K et al (2013) Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J Allergy Clin Immunol 132:170–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, Wang G (2018) Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology 16:81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busato A, Bonafede R, Bontempi P, Scambi I, Schiaffino L, Benati D, Malatesta M, Sbarbati A, Marzola P, Mariotti R (2016) Magnetic resonance imaging of ultrasmall superparamagnetic iron oxide-labeled exosomes from stem cells: a new method to obtain labeled exosomes. Int J Nanomedicine 11:2481–2490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Marrero J, Serrano-Pertierra E, Oliveira-Rodriguez M, Zaragoza MC, Martinez-Martinez A, Blanco-Lopez MDC, Alegre J (2018) Circulating extracellular vesicles as potential biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis: an exploratory pilot study. J Extracell Vesicles 7:1453730

    PubMed  PubMed Central  Google Scholar 

  • Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, Ashraf M, Weintraub N, Ma G, Tang Y (2013) Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 431:566–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Lu FB, Chen DZ, Wu JL, Hu ED, Xu LM, Zheng MH, Li H, Huang Y, Jin XY, Gong YW, Lin Z, Wang XD, Chen YP (2018) BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis. Mol Immunol 93:38–46

    CAS  PubMed  Google Scholar 

  • Cheng Y, Schorey JS (2013) Exosomes carrying mycobacterial antigens can protect mice against Mycobacterium tuberculosis infection. Eur J Immunol 43:3279–3290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang CY, Chen C (2019) Toward characterizing extracellular vesicles at a single-particle level. J Biomed Sci 26:9

    PubMed  PubMed Central  Google Scholar 

  • Ciullo A, Biemmi V, Milano G, Bolis S, Cervio E, Fertig ET, Gherghiceanu M, Moccetti T, Camici GG, Vassalli G, Barile L (2019) Exosomal Expression of CXCR4 Targets Cardioprotective Vesicles to Myocardial Infarction and Improves Outcome after Systemic Administration. Int J Mol Sci 20

  • Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    CAS  PubMed  Google Scholar 

  • Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C, Noel D (2018) Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 8:1399–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui GH, Wu J, Mou FF, Xie WH, Wang FB, Wang QL, Fang J, Xu YW, Dong YR, Liu JR, Guo HD (2018) Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J 32:654–668

    CAS  PubMed  Google Scholar 

  • Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, Li G (2008) Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 16:782–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danesh A, Inglis HC, Jackman RP, Wu S, Deng X, Muench MO, Heitman JW, Norris PJ (2014) Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood 123:687–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Curtis I, Meldolesi J (2012) Cell surface dynamics - how Rho GTPases orchestrate the interplay between the plasma membrane and the cortical cytoskeleton. J Cell Sci 125:4435–4444

    PubMed  Google Scholar 

  • De La Pena H, Madrigal JA, Rusakiewicz S, Bencsik M, Cave GW, Selman A, Rees RC, Travers PJ, Dodi IA (2009) Artificial exosomes as tools for basic and clinical immunology. J Immunol Methods 344:121–132

    Google Scholar 

  • De Miguel D, Basanez G, Sanchez D, Malo PG, Marzo I, Larrad L, Naval J, Pardo J, Anel A, Martinez-Lostao L (2013) Liposomes decorated with Apo2L/TRAIL overcome chemoresistance of human hematologic tumor cells. Mol Pharm 10:893–904

    PubMed  Google Scholar 

  • DeMarino C, Schwab A, Pleet M, Mathiesen A, Friedman J, El-Hage N, Kashanchi F (2017) Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection. J NeuroImmune Pharmacol 12:31–50

    PubMed  Google Scholar 

  • Deng ZB, Zhuang X, Ju S, Xiang X, Mu J, Liu Y, Jiang H, Zhang L, Mobley J, McClain C, Feng W, Grizzle W, Yan J, Miller D, Kronenberg M, Zhang HG (2013) Exosome-like nanoparticles from intestinal mucosal cells carry prostaglandin E2 and suppress activation of liver NKT cells. J Immunol 190:3579–3589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, Samykutty A, Zhang L, Yan J, Miller D, Suttles J, Zhang HG (2017) Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. Mol Ther 25:1641–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng W, Tang T, Hou Y, Zeng Q, Wang Y, Fan W, Qu S (2019) Extracellular vesicles in atherosclerosis. Clin Chim Acta 495:109–117

    CAS  PubMed  Google Scholar 

  • Di Rocco G, Baldari S, Toietta G (2016) Towards Therapeutic Delivery of Extracellular Vesicles: Strategies for In Vivo Tracking and Biodistribution Analysis. Stem Cells Int 2016:5029619

    PubMed  PubMed Central  Google Scholar 

  • Didiot MC, Hall LM, Coles AH, Haraszti RA, Godinho BM, Chase K, Sapp E, Ly S, Alterman JF, Hassler MR, Echeverria D, Raj L, Morrissey DV, DiFiglia M, Aronin N, Khvorova A (2016) Exosome-mediated Delivery of Hydrophobically Modified siRNA for Huntingtin mRNA Silencing. Mol Ther 24:1836–1847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doeppner TR, Herz J, Gorgens A, Schlechter J, Ludwig AK, Radtke S, de Miroschedji K, Horn PA, Giebel B, Hermann DM (2015) Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med 4:1131–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escudier B et al (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 3:10

    PubMed  PubMed Central  Google Scholar 

  • Fais S et al (2016) Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano 10:3886–3899

    CAS  PubMed  Google Scholar 

  • Fang WH, Kumar S, McDowell G, Smith D, Krupinski J, Olah P, Al-Baradie RS, Al-Rukban MO, Petcu EB, Slevin M (2016) Mesenchymal Stem Cells Loaded with p5, Derived from CDK5 Activator p35, Inhibit Calcium-Induced CDK5 Activation in Endothelial Cells. Stem Cells Int 2016:2165462

    PubMed  PubMed Central  Google Scholar 

  • Felicetti F, De Feo A, Coscia C, Puglisi R, Pedini F, Pasquini L, Bellenghi M, Errico MC, Pagani E, Care A (2016) Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. J Transl Med 14:56

    PubMed  PubMed Central  Google Scholar 

  • Feng Z, Hensley L, McKnight KL, Hu F, Madden V, Ping L, Jeong SH, Walker C, Lanford RE, Lemon SM (2013) A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496:367–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421

    CAS  PubMed  Google Scholar 

  • Forterre A, Jalabert A, Berger E, Baudet M, Chikh K, Errazuriz E, De Larichaudy J, Chanon S, Weiss-Gayet M, Hesse AM, Record M, Geloen A, Lefai E, Vidal H, Coute Y, Rome S (2014) Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk? PLoS One 9:e84153

    PubMed  PubMed Central  Google Scholar 

  • Fu H, Hu D, Zhang L, Tang P (2018) Role of extracellular vesicles in rheumatoid arthritis. Mol Immunol 93:125–132

    CAS  PubMed  Google Scholar 

  • Fuhrmann G, Herrmann IK, Stevens MM (2015a) Cell-derived vesicles for drug therapy and diagnostics: opportunities and challenges. Nano Today 10:397–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM (2015b) Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 205:35–44

    CAS  PubMed  Google Scholar 

  • Fujita Y, Kadota T, Araya J, Ochiya T, Kuwano K (2018) Extracellular Vesicles: New Players in Lung Immunity. Am J Respir Cell Mol Biol 58:560–565

    CAS  PubMed  Google Scholar 

  • Gabathuler R (2009) Blood-brain barrier transport of drugs for the treatment of brain diseases. CNS Neurol Disord Drug Targets 8:195–204

    CAS  PubMed  Google Scholar 

  • Gallego-Lleyda A, De Miguel D, Anel A, Martinez-Lostao L (2018) Lipid Nanoparticles Decorated with TNF-Related Aptosis-Inducing Ligand (TRAIL) Are More Cytotoxic than Soluble Recombinant TRAIL in Sarcoma. Int J Mol Sci 19.

  • Gangadaran P, Rajendran RL, Lee HW, Kalimuthu S, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC (2017) Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Control Release 264:112–126

    CAS  PubMed  Google Scholar 

  • Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, Zhu J, Ma L, Guo J, Shi H, Zou Y, Ge J (2016) Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. J Cell Mol Med 20:2318–2327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, Moulton HM, Seow Y, Yin H (2018) Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci Transl Med 10

  • Garcia-Manrique P, Matos M, Gutierrez G, Pazos C, Blanco-Lopez MC (2018) Therapeutic biomaterials based on extracellular vesicles: classification of bio-engineering and mimetic preparation routes. J Extracell Vesicles 7:1422676

    PubMed  PubMed Central  Google Scholar 

  • Goh WJ, Lee CK, Zou S, Woon EC, Czarny B, Pastorin G (2017a) Doxorubicin-loaded cell-derived nanovesicles: an alternative targeted approach for anti-tumor therapy. Int J Nanomedicine 12:2759–2767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goh WJ, Zou S, Ong WY, Torta F, Alexandra AF, Schiffelers RM, Storm G, Wang JW, Czarny B, Pastorin G (2017b) Bioinspired Cell-Derived Nanovesicles versus Exosomes as Drug Delivery Systems: a Cost-Effective Alternative. Sci Rep 7:14322

    PubMed  PubMed Central  Google Scholar 

  • Gopal SK, Greening DW, Rai A, Chen M, Xu R, Shafiq A, Mathias RA, Zhu HJ, Simpson RJ (2017) Extracellular vesicles: their role in cancer biology and epithelial-mesenchymal transition. Biochem J 474:21–45

    CAS  PubMed  Google Scholar 

  • Gorgun C, Reverberi D, Rotta G, Villa F, Quarto R, Tasso R (2019) Isolation and Flow Cytometry Characterization of Extracellular-Vesicle Subpopulations Derived from Human Mesenchymal Stromal Cells. Curr Protoc Stem Cell Biol 48:e76

    PubMed  Google Scholar 

  • Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2

  • Grange C, Tapparo M, Bruno S, Chatterjee D, Quesenberry PJ, Tetta C, Camussi G (2014) Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med 33:1055–1063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Qiu W, Liu Q, Qian M, Wang S, Zhang Z, Gao X, Chen Z, Xue H, Li G (2018) Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene 37:4239–4259

    CAS  PubMed  Google Scholar 

  • Gyorgy B, Hung ME, Breakefield XO, Leonard JN (2015) Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 55:439–464

    CAS  PubMed  Google Scholar 

  • Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV (2015) Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 207:18–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hertzberg H, Wolff K (1990) Which diagnosis do you suggest? Schweiz Arch Tierheilkd 132:331–334

    CAS  PubMed  Google Scholar 

  • Hood JL, Scott MJ, Wickline SA (2014) Maximizing exosome colloidal stability following electroporation. Anal Biochem 448:41–49

    CAS  PubMed  Google Scholar 

  • Hoshino A et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Yao H, Chaudhuri AD, Duan M, Yelamanchili SV, Wen H, Cheney PD, Fox HS, Buch S (2012) Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis 3:e381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Gong AY, Roth AL, Huang BQ, Ward HD, Zhu G, Larusso NF, Hanson ND, Chen XM (2013) Release of luminal exosomes contributes to TLR4-mediated epithelial antimicrobial defense. PLoS Pathog 9:e1003261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Wickline SA, Hood JL (2015) Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn Reson Med 74:266–271

    CAS  PubMed  Google Scholar 

  • Hu G, Yang L, Cai Y, Niu F, Mezzacappa F, Callen S, Fox HS, Buch S (2016a) Emerging roles of extracellular vesicles in neurodegenerative disorders: focus on HIV-associated neurological complications. Cell Death Dis 7:e2481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, Huang F, Zhang H, Chen L (2016b) Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep 6:32993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Witwer KW, Bond VC, Haughey N, Kashanchi F, Pulliam L, Buch S (2017a) Proceedings of the ISEV symposium on "HIV, NeuroAIDS, drug abuse & EVs". J Extracell Vesicles 6:1294360

    PubMed  PubMed Central  Google Scholar 

  • Hu G, Yelamanchili S, Kashanchi F, Haughey N, Bond VC, Witwer KW, Pulliam L, Buch S (2017b) Proceedings of the 2017 ISEV symposium on "HIV, NeuroHIV, drug abuse, & EVs". J Neuro-Oncol 23:935–940

    Google Scholar 

  • Hu G, Liao K, Niu F, Yang L, Dallon BW, Callen S, Tian C, Shu J, Cui J, Sun Z, Lyubchenko YL, Ka M, Chen XM, Buch S (2018) Astrocyte EV-Induced lincRNA-Cox2 Regulates Microglial Phagocytosis: Implications for Morphine-Mediated Neurodegeneration. Mol Ther Nucleic Acids 13:450–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Huang Y, Zhou Y, Nie W, Pu X, Xu X, Zhu J (2018) Exosomes derived from oxidized LDL-stimulated macrophages attenuate the growth and tube formation of endothelial cells. Mol Med Rep 17:4605–4610

    CAS  PubMed  Google Scholar 

  • Huang-Doran I, Zhang CY, Vidal-Puig A (2017) Extracellular Vesicles: Novel Mediators of Cell Communication In Metabolic Disease. Trends Endocrinol Metab 28:3–18

    CAS  PubMed  Google Scholar 

  • Ibrahim AG, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2:606–619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S (2016) Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. Int J Mol Sci 17:171

    PubMed  PubMed Central  Google Scholar 

  • Jacob MC, Favre M, Bensa JC (1991) Membrane cell permeabilization with saponin and multiparametric analysis by flow cytometry. Cytometry 12:550–558

    CAS  PubMed  Google Scholar 

  • Jamur MC, Oliver C (2010) Permeabilization of cell membranes. Methods Mol Biol 588:63–66

    PubMed  Google Scholar 

  • Jang SC, Gho YS (2014) Could bioengineered exosome-mimetic nanovesicles be an efficient strategy for the delivery of chemotherapeutics? Nanomedicine (London) 9:177–180

    CAS  Google Scholar 

  • Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, Nilsson J, Lotvall J, Kim YK, Gho YS (2013) Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7:7698–7710

    CAS  PubMed  Google Scholar 

  • Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760

    CAS  PubMed  Google Scholar 

  • Jeong D, Jo W, Yoon J, Kim J, Gianchandani S, Gho YS, Park J (2014) Nanovesicles engineered from ES cells for enhanced cell proliferation. Biomaterials 35:9302–9310

    CAS  PubMed  Google Scholar 

  • Jiang ZZ, Liu YM, Niu X, Yin JY, Hu B, Guo SC, Fan Y, Wang Y, Wang NS (2016) Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther 7:24

    PubMed  PubMed Central  Google Scholar 

  • Jo W, Kim J, Yoon J, Jeong D, Cho S, Jeong H, Yoon YJ, Kim SC, Gho YS, Park J (2014) Large-scale generation of cell-derived nanovesicles. Nanoscale 6:12056–12064

    CAS  PubMed  Google Scholar 

  • Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M (2014) A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 1846:75–87

    CAS  PubMed  Google Scholar 

  • Johnsen KB, Gudbergsson JM, Skov MN, Christiansen G, Gurevich L, Moos T, Duroux M (2016) Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes. Cytotechnology 68:2125–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson NJ, Hanson LR, Frey WH (2010) Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm 7:884–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone RM (2006) Exosomes biological significance: A concise review. Blood Cells Mol Dis 36:315–321

    CAS  PubMed  Google Scholar 

  • Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420

    CAS  PubMed  Google Scholar 

  • Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, Roth M, Welti R, Mobley J, Jun Y, Miller D, Zhang HG (2013) Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther 21:1345–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju Z, Ma J, Wang C, Yu J, Qiao Y, Hei F (2017) Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells. Inflammation 40:486–496

    CAS  PubMed  Google Scholar 

  • Jung KO, Youn H, Lee CH, Kang KW, Chung JK (2017) Visualization of exosome-mediated miR-210 transfer from hypoxic tumor cells. Oncotarget 8:9899–9910

    PubMed  Google Scholar 

  • Kalani A, Kamat PK, Chaturvedi P, Tyagi SC, Tyagi N (2014) Curcumin-primed exosomes mitigate endothelial cell dysfunction during hyperhomocysteinemia. Life Sci 107:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalani A, Chaturvedi P, Kamat PK, Maldonado C, Bauer P, Joshua IG, Tyagi SC, Tyagi N (2016) Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol 79:360–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalra H, Drummen GP, Mathivanan S (2016) Focus on Extracellular Vesicles: Introducing the Next Small Big Thing. Int J Mol Sci 17:170

    PubMed  PubMed Central  Google Scholar 

  • Khan M et al (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117:52–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, Mi Z, Watkins SC, Gambotto A, Robbins PD (2005) Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. Journal of immunology (Baltimore, Md : 1950) 174:6440-6448.

  • Kim SH, Bianco N, Menon R, Lechman ER, Shufesky WJ, Morelli AE, Robbins PD (2006) Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol Ther 13:289–300

    CAS  PubMed  Google Scholar 

  • Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, Hingtgen SD, Kabanov AV, Batrakova EV (2016) Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12:655–664

    CAS  PubMed  Google Scholar 

  • Kim YJ, Yoo SM, Park HH, Lim HJ, Kim YL, Lee S, Seo KW, Kang KS (2017a) Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochem Biophys Res Commun 493:1102–1108

    CAS  PubMed  Google Scholar 

  • Kim YS, Kim JY, Cho R, Shin DM, Lee SW, Oh YM (2017b) Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Exp Mol Med 49:e284

    PubMed  PubMed Central  Google Scholar 

  • Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, Kabanov AV, Batrakova EV (2018) Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine 14:195–204

    CAS  PubMed  Google Scholar 

  • Kim SY, Phan TH, Limantoro C, Kalionis B, Chrzanowski W (2019) Isolation and Characterization of Extracellular Vesicles from Mesenchymal Stromal Cells. Methods Mol Biol 2029:15–23

    CAS  PubMed  Google Scholar 

  • Kinoshita T, Yip KW, Spence T, Liu FF (2017) MicroRNAs in extracellular vesicles: potential cancer biomarkers. J Hum Genet 62:67–74

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Ebisawa K, Kambe M, Kasai T, Suga H, Nakamura K, Narita Y, Ogata A, Kamei Y (2018) Editors' Choice Effects of exosomes derived from the induced pluripotent stem cells on skin wound healing. Nagoya J Med Sci 80:141–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP (2018) Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Res Int 2018:8545347

    PubMed  PubMed Central  Google Scholar 

  • Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM (2012) Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 7:1525–1541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire C, Chen JW, Tannous BA, Breakefield XO (2014) Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8:483–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamichhane TN, Raiker RS, Jay SM (2015) Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Mol Pharm 12:3650–3657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM (2016) Oncogene Knockdown via Active Loading of Small RNAs into Extracellular Vesicles by Sonication. Cell Mol Bioeng 9:315–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JF, Kobayashi T, Salles JP, Perret B, Bonnerot C, Record M (2004) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 380:161–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–2611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Lee H, Goh U, Kim J, Jeong M, Lee J, Park JH (2016) Cellular Engineering with Membrane Fusogenic Liposomes to Produce Functionalized Extracellular Vesicles. ACS Appl Mater Interfaces 8:6790–6795

    CAS  PubMed  Google Scholar 

  • Leiferman A, Shu J, Upadhyaya B, Cui J, Zempleni J (2019) Storage of Extracellular Vesicles in Human Milk, and MicroRNA Profiles in Human Milk Exosomes and Infant Formulas. J Pediatr Gastroenterol Nutr

  • Lener T et al (2015) Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 4:30087

    PubMed  Google Scholar 

  • Letsiou E, Bauer N (2018) Endothelial Extracellular Vesicles in Pulmonary Function and Disease. Curr Top Membr 82:197–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Huang Q, Huyan T, Wang Y, Huang Q, Shi J (2018a) Bifacial effects of engineering tumour cell-derived exosomes on human natural killer cells. Exp Cell Res 363:141–150

    CAS  PubMed  Google Scholar 

  • Li W, Liu Y, Zhang P, Tang Y, Zhou M, Jiang W, Zhang X, Wu G, Zhou Y (2018b) Tissue-Engineered Bone Immobilized with Human Adipose Stem Cells-Derived Exosomes Promotes Bone Regeneration. ACS Appl Mater Interfaces 10:5240–5254

    CAS  PubMed  Google Scholar 

  • Liang LG, Kong MQ, Zhou S, Sheng YF, Wang P, Yu T, Inci F, Kuo WP, Li LJ, Demirci U, Wang S (2017) An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci Rep 7:46224

    PubMed  PubMed Central  Google Scholar 

  • Liao K, Niu F, Dagur RS, He M, Tian C, Hu G (2019) Intranasal Delivery of lincRNA-Cox2 siRNA Loaded Extracellular Vesicles Decreases Lipopolysaccharide-Induced Microglial Proliferation in Mice. J NeuroImmune Pharmacol

  • Lin J, Li J, Huang B, Liu J, Chen X, Chen XM, Xu YM, Huang LF, Wang XZ (2015) Exosomes: novel biomarkers for clinical diagnosis. ScientificWorldJournal 2015:657086

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X, Jiang X, Hou D, Chen X, Chen Y, Yang Z, Jin L, Jiang W, Tian C, Zhou G, Zen K, Zhang J, Zhang Y, Li J, Zhang CY (2015) Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep 5:17543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Guo J, Tian F, Yang N, Yan F, Ding Y, Wei J, Hu G, Nie G, Sun J (2017) Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows. ACS Nano 11:6968–6976

    CAS  PubMed  Google Scholar 

  • Llorente A, Skotland T, Sylvanne T, Kauhanen D, Rog T, Orlowski A, Vattulainen I, Ekroos K, Sandvig K (2013) Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta 1831:1302–1309

    CAS  PubMed  Google Scholar 

  • Long Q, Upadhya D, Hattiangady B, Kim DK, An SY, Shuai B, Prockop DJ, Shetty AK (2017) Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc Natl Acad Sci U S A 114:E3536–E3545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Zhao X, Xing H, Xun Z, Zhu S, Lang L, Yang T, Cai C, Wang D, Ding P (2018) Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA. Int J Pharm 550:100–113

    CAS  PubMed  Google Scholar 

  • Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D (2017) Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 38:754–763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunavat TR, Jang SC, Nilsson L, Park HT, Repiska G, Lasser C, Nilsson JA, Gho YS, Lotvall J (2016) RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer. Biomaterials 102:231–238

    CAS  PubMed  Google Scholar 

  • Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, Lin HM, Shang CZ, Chen YJ, Min J (2012) Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 287:15874–15885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Lostao L, Garcia-Alvarez F, Basanez G, Alegre-Aguaron E, Desportes P, Larrad L, Naval J, Martinez-Lorenzo MJ, Anel A (2010) Liposome-bound APO2L/TRAIL is an effective treatment in a rabbit model of rheumatoid arthritis. Arthritis Rheum 62:2272–2282

    CAS  PubMed  Google Scholar 

  • Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteome 73:1907–1920

    CAS  Google Scholar 

  • Mathivanan S, Fahner CJ, Reid GE, Simpson RJ (2012) ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40:D1241–D1244

    CAS  PubMed  Google Scholar 

  • Menck K, Bleckmann A, Schulz M, Ries L, Binder C (2017) Isolation and Characterization of Microvesicles from Peripheral Blood. J Vis Exp.

  • Mentkowski KI, Snitzer JD, Rusnak S, Lang JK (2018) Therapeutic Potential of Engineered Extracellular Vesicles. AAPS J 20:50

    PubMed  Google Scholar 

  • Miranda AM, Lasiecka ZM, Xu Y, Neufeld J, Shahriar S, Simoes S, Chan RB, Oliveira TG, Small SA, Di Paolo G (2018) Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures. Nat Commun 9:291

    PubMed  PubMed Central  Google Scholar 

  • Mittelbrunn M, Sanchez-Madrid F (2012) Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 13:328–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, Zahorchak AF, Logar AJ, Wang Z, Watkins SC, Falo LD Jr, Thomson AW (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104:3257–3266

    CAS  PubMed  Google Scholar 

  • Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, Hsu DH, Le Pecq JB, Lyerly HK (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3:9

    PubMed  PubMed Central  Google Scholar 

  • Munagala R, Aqil F, Jeyabalan J, Agrawal AK, Mudd AM, Kyakulaga AH, Singh IP, Vadhanam MV, Gupta RC (2017) Exosomal formulation of anthocyanidins against multiple cancer types. Cancer Lett 393:94–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy C, Withrow J, Hunter M, Liu Y, Tang YL, Fulzele S, Hamrick MW (2018) Emerging role of extracellular vesicles in musculoskeletal diseases. Mol Asp Med 60:123–128

    CAS  Google Scholar 

  • Mushahary D, Spittler A, Kasper C, Weber V, Charwat V (2018) Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 93:19–31

    CAS  PubMed  Google Scholar 

  • Namazi H, Mohit E, Namazi I, Rajabi S, Samadian A, Hajizadeh-Saffar E, Aghdami N, Baharvand H (2018) Exosomes secreted by hypoxic cardiosphere-derived cells enhance tube formation and increase pro-angiogenic miRNA. J Cell Biochem 119:4150–4160

    CAS  PubMed  Google Scholar 

  • Nguyen DB, Ly TB, Wesseling MC, Hittinger M, Torge A, Devitt A, Perrie Y, Bernhardt I (2016) Characterization of Microvesicles Released from Human Red Blood Cells. Cell Physiol Biochem 38:1085–1099

    CAS  PubMed  Google Scholar 

  • Nozaki T, Sugiyama S, Sugamura K, Ohba K, Matsuzawa Y, Konishi M, Matsubara J, Akiyama E, Sumida H, Matsui K, Jinnouchi H, Ogawa H (2010) Prognostic value of endothelial microparticles in patients with heart failure. Eur J Heart Fail 12:1223–1228

    PubMed  Google Scholar 

  • Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21:185–191

    CAS  PubMed  Google Scholar 

  • Ohno S, Drummen GP, Kuroda M (2016) Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems. Int J Mol Sci 17:172

    PubMed  PubMed Central  Google Scholar 

  • Oude Blenke E, Klaasse G, Merten H, Pluckthun A, Mastrobattista E, Martin NI (2015) Liposome functionalization with copper-free "click chemistry". J Control Release 202:14–20

    CAS  PubMed  Google Scholar 

  • Pankoui Mfonkeu JB, Gouado I, Fotso Kuate H, Zambou O, Amvam Zollo PH, Grau GE, Combes V (2010) Elevated cell-specific microparticles are a biological marker for cerebral dysfunctions in human severe malaria. PLoS One 5:e13415

    PubMed  PubMed Central  Google Scholar 

  • Parker B, Al-Husain A, Pemberton P, Yates AP, Ho P, Gorodkin R, Teh LS, Alexander MY, Bruce IN (2014) Suppression of inflammation reduces endothelial microparticles in active systemic lupus erythematosus. Ann Rheum Dis 73:1144–1150

    CAS  PubMed  Google Scholar 

  • Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Vigano L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardo ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A (2014) Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 192:262–270

    CAS  PubMed  Google Scholar 

  • Pegtel DM, Gould SJ (2019) Exosomes. Annu Rev Biochem 88:487–514

    CAS  PubMed  Google Scholar 

  • Peinado H et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perets N, Hertz S, London M, Offen D (2018) Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice. Mol Autism 9:57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pleet ML, Branscome H, DeMarino C, Pinto DO, Zadeh MA, Rodriguez M, Sariyer IK, El-Hage N, Kashanchi F (2018) Autophagy, EVs, and Infections: A Perfect Question for a Perfect Time. Front Cell Infect Microbiol 8:362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D (2019) Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease. J Neuro-Oncol

  • Rajendran RL, Gangadaran P, Bak SS, Oh JM, Kalimuthu S, Lee HW, Baek SH, Zhu L, Sung YK, Jeong SY, Lee SW, Lee J, Ahn BC (2017) Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Sci Rep 7:15560

    PubMed  PubMed Central  Google Scholar 

  • Ran R, Middelberg APJ, Zhao CX (2016) Microfluidic synthesis of multifunctional liposomes for tumour targeting. Colloids Surf B: Biointerfaces 148:402–410

    CAS  PubMed  Google Scholar 

  • Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Mol Ther 23:812–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratajczak MZ, Ratajczak J (2016) Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin Transl Med 5:7

    PubMed  PubMed Central  Google Scholar 

  • Reiner AT et al (2017) Concise Review: Developing Best-Practice Models for the Therapeutic Use of Extracellular Vesicles. Stem Cells Transl Med 6:1730–1739

    PubMed  PubMed Central  Google Scholar 

  • Richter M, Fuhrmann K, Fuhrmann G (2019) Evaluation of the Storage Stability of Extracellular Vesicles. J Vis Exp.

    Google Scholar 

  • Rosenblum D, Joshi N, Tao W, Karp JM, Peer D (2018) Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9:1410

    PubMed  PubMed Central  Google Scholar 

  • Rossi IV, Gavinho B, Ramirez MI (2019) Isolation and Characterization of Extracellular Vesicles Derived from Trypanosoma cruzi. Methods Mol Biol 1955:89–104

    CAS  PubMed  Google Scholar 

  • Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J (2018) Exosomes: new molecular targets of diseases. Acta Pharmacol Sin 39:501–513

    CAS  PubMed  Google Scholar 

  • Sato YT, Umezaki K, Sawada S, Mukai SA, Sasaki Y, Harada N, Shiku H, Akiyoshi K (2016) Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep 6:21933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segura E, Amigorena S, Thery C (2005) Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis 35:89–93

    CAS  PubMed  Google Scholar 

  • Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV (2013) Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 11:88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sierro F, Grau GER (2019) The Ins and Outs of Cerebral Malaria Pathogenesis: Immunopathology, Extracellular Vesicles, Immunometabolism, and Trained Immunity. Front Immunol 10:830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silachev DN, Goryunov KV, Shpilyuk MA, Beznoschenko OS, Morozova NY, Kraevaya EE, Popkov VA, Pevzner IB, Zorova LD, Evtushenko EA, Starodubtseva NL, Kononikhin AS, Bugrova AE, Evtushenko EG, Plotnikov EY, Zorov DB, Sukhikh GT (2019) Effect of MSCs and MSC-Derived Extracellular Vesicles on Human Blood Coagulation. Cells 8.

  • Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6:267–283

    CAS  PubMed  Google Scholar 

  • Skalnikova HK, Bohuslavova B, Turnovcova K, Juhasova J, Juhas S, Rodinova M, Vodicka P (2019) Isolation and Characterization of Small Extracellular Vesicles from Porcine Blood Plasma, Cerebrospinal Fluid, and Seminal Plasma. Proteomes 7

  • Smyth T, Petrova K, Payton NM, Persaud I, Redzic JS, Graner MW, Smith-Jones P, Anchordoquy TJ (2014) Surface functionalization of exosomes using click chemistry. Bioconjug Chem 25:1777–1784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ (2015) Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release 199:145–155

    CAS  PubMed  Google Scholar 

  • Srivastava A, Babu A, Filant J, Moxley KM, Ruskin R, Dhanasekaran D, Sood AK, McMeekin S, Ramesh R (2016a) Exploitation of Exosomes as Nanocarriers for Gene-, Chemo-, and Immune-Therapy of Cancer. J Biomed Nanotechnol 12:1159–1173

    CAS  PubMed  Google Scholar 

  • Srivastava A, Amreddy N, Babu A, Panneerselvam J, Mehta M, Muralidharan R, Chen A, Zhao YD, Razaq M, Riedinger N, Kim H, Liu S, Wu S, Abdel-Mageed AB, Munshi A, Ramesh R (2016b) Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep 6:38541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18:1606–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Shan A, Wei Z, Xu B (2018) Intravenous mesenchymal stem cell-derived exosomes ameliorate myocardial inflammation in the dilated cardiomyopathy. Biochem Biophys Res Commun 503:2611–2618

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T, Takakura Y (2013) Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol 165:77–84

    CAS  PubMed  Google Scholar 

  • Tao SC, Rui BY, Wang QY, Zhou D, Zhang Y, Guo SC (2018) Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds. Drug Deliv 25:241–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    CAS  PubMed  Google Scholar 

  • Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    CAS  PubMed  Google Scholar 

  • Thery C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750

    PubMed  PubMed Central  Google Scholar 

  • Tian T, Zhu YL, Hu FH, Wang YY, Huang NP, Xiao ZD (2013) Dynamics of exosome internalization and trafficking. J Cell Physiol 228:1487–1495

    CAS  PubMed  Google Scholar 

  • Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390

    CAS  PubMed  Google Scholar 

  • Todorova D, Simoncini S, Lacroix R, Sabatier F, Dignat-George F (2017) Extracellular Vesicles in Angiogenesis. Circ Res 120:1658–1673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trams EG, Lauter CJ, Salem N Jr, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645:63–70

    CAS  PubMed  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    CAS  PubMed  Google Scholar 

  • Viaud S, Ploix S, Lapierre V, Thery C, Commere PH, Tramalloni D, Gorrichon K, Virault-Rocroy P, Tursz T, Lantz O, Zitvogel L, Chaput N (2011) Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade: a critical role of interferon-gamma. J Immunother 34:65–75

    PubMed  Google Scholar 

  • Vidal M, Sainte-Marie J, Philippot JR, Bienvenue A (1989) Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: evidence precluding a role for "aminophospholipid translocase". J Cell Physiol 140:455–462

    CAS  PubMed  Google Scholar 

  • Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820:940–948

    CAS  PubMed  Google Scholar 

  • Wahlgren J, De LKT, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40:e130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker CM, Steimer KS, Rosenthal KL, Levy JA (1988) Identification of human immunodeficiency virus (HIV) envelope type-specific T helper cells in an HIV-infected individual. J Clin Invest 82:2172–2175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wu HJ, Fine D, Schmulen J, Hu Y, Godin B, Zhang JX, Liu X (2013) Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip 13:2879–2882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Altinoglu S, Takeda YS, Xu Q (2015) Integrating Protein Engineering and Bioorthogonal Click Conjugation for Extracellular Vesicle Modulation and Intracellular Delivery. PLoS One 10:e0141860

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Sun X, Zhao J, Yang Y, Cai X, Xu J, Cao P (2017a) Exosomes: A Novel Strategy for Treatment and Prevention of Diseases. Front Pharmacol 8:300

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chen X, Tian B, Liu J, Yang L, Zeng L, Chen T, Hong A, Wang X (2017b) Nucleolin-targeted Extracellular Vesicles as a Versatile Platform for Biologics Delivery to Breast Cancer. Theranostics 7:1360–1372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, Zhou J, Heng BC, Zou XH, Ouyang H, Liu H (2017c) Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther 8:189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Pei S, Han L, Guo B, Li Y, Duan R, Yao Y, Xue B, Chen X, Jia Y (2018a) Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes via Downregulation of Phosphorylated NFkappaB P65 Subunit in Spinal Cord Injury. Cell Physiol Biochem 50:1535–1559

    CAS  PubMed  Google Scholar 

  • Wang XL, Zhao YY, Sun L, Shi Y, Li ZQ, Zhao XD, Xu CG, Ji HG, Wang M, Xu WR, Zhu W (2018b) Exosomes derived from human umbilical cord mesenchymal stem cells improve myocardial repair via upregulation of Smad7. Int J Mol Med 41:3063–3072

    CAS  PubMed  Google Scholar 

  • Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, Bear J, Monninger M, Sun M, Morales-Kastresana A, Jones JC, Felber BK, Chen X, Gursel I, Pavlakis GN (2016) Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 105:195–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watson LS, Hamlett ED, Stone TD, Sims-Robinson C (2019) Neuronally derived extracellular vesicles: an emerging tool for understanding Alzheimer's disease. Mol Neurodegener 14:22

    PubMed  PubMed Central  Google Scholar 

  • Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435

    CAS  PubMed  Google Scholar 

  • Weber A, Wehmeyer JC, Schmidt V, Lichtenberg A, Akhyari P (2019) Rapid Fluorescence-based Characterization of Single Extracellular Vesicles in Human Blood with Nanoparticle-tracking Analysis. J Vis Exp.

    Google Scholar 

  • Wiklander OP, Nordin JZ, O'Loughlin A, Gustafsson Y, Corso G, Mager I, Vader P, Lee Y, Sork H, Seow Y, Heldring N, Alvarez-Erviti L, Smith CI, Le Blanc K, Macchiarini P, Jungebluth P, Wood MJ, Andaloussi SE (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 4:26316

    PubMed  Google Scholar 

  • Withrow J, Murphy C, Liu Y, Hunter M, Fulzele S, Hamrick MW (2016) Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 18:286

    PubMed  PubMed Central  Google Scholar 

  • Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen C, Li H, Li P, Quinn D, Dao M, Suresh S, Sadovsky Y, Huang TJ (2017) Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A 114:10584–10589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JY, Ji AL, Wang ZX, Qiang GH, Qu Z, Wu JH, Jiang CP (2018) Exosome-Mimetic Nanovesicles from Hepatocytes promote hepatocyte proliferation in vitro and liver regeneration in vivo. Sci Rep 8:2471

    PubMed  PubMed Central  Google Scholar 

  • Wu X, Liu Y, Wei W, Liu ML (2019) Extracellular vesicles in autoimmune vasculitis - Little dirts light the fire in blood vessels. Autoimmun Rev 18:593–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao W, Dong W, Zhang C, Saren G, Geng P, Zhao H, Li Q, Zhu J, Li G, Zhang S, Ye M (2013) Effects of the epigenetic drug MS-275 on the release and function of exosome-related immune molecules in hepatocellular carcinoma cells. Eur J Med Res 18:61

    PubMed  PubMed Central  Google Scholar 

  • Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ (2016) Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 126:1152–1162

    PubMed  PubMed Central  Google Scholar 

  • Yaddanapudi K, Meng S, Whitt AG, Al Rayyan N, Richie J, Tu A, Eaton JW, Li C (2019) Exosomes from GM-CSF expressing embryonic stem cells are an effective prophylactic vaccine for cancer prevention. Oncoimmunology 8:1561119

    PubMed  PubMed Central  Google Scholar 

  • Yanez-Mo M et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    PubMed  Google Scholar 

  • Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin VP, Lockman P, Bai S (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32:2003–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Niu F, Yao H, Liao K, Chen X, Kook Y, Ma R, Hu G, Buch S (2018a) Exosomal miR-9 Released from HIV Tat Stimulated Astrocytes Mediates Microglial Migration. J NeuroImmune Pharmacol 13:330–344

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Boza-Serrano A, Dunning CJR, Clausen BH, Lambertsen KL, Deierborg T (2018b) Inflammation leads to distinct populations of extracellular vesicles from microglia. J Neuroinflammation 15:168

    PubMed  PubMed Central  Google Scholar 

  • Yoon J, Jo W, Jeong D, Kim J, Jeong H, Park J (2015) Generation of nanovesicles with sliced cellular membrane fragments for exogenous material delivery. Biomaterials 59:12–20

    CAS  PubMed  Google Scholar 

  • Yu B, Kim HW, Gong M, Wang J, Millard RW, Wang Y, Ashraf M, Xu M (2015) Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 182:349–360

    PubMed  Google Scholar 

  • Yuan Z, Kolluri KK, Gowers KH, Janes SM (2017) TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy. J Extracell Vesicles 6:1265291

    PubMed  PubMed Central  Google Scholar 

  • Yuana Y, Boing AN, Grootemaat AE, van der Pol E, Hau CM, Cizmar P, Buhr E, Sturk A, Nieuwland R (2015) Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracell Vesicles 4:29260

    PubMed  Google Scholar 

  • Yuyama K, Sun H, Sakai S, Mitsutake S, Okada M, Tahara H, Furukawa J, Fujitani N, Shinohara Y, Igarashi Y (2014) Decreased amyloid-beta pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J Biol Chem 289:24488–24498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience 65:783–797

    PubMed  PubMed Central  Google Scholar 

  • Zara M, Guidetti GF, Camera M, Canobbio I, Amadio P, Torti M, Tremoli E, Barbieri SS (2019) Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis. Int J Mol Sci 20

  • Zhang JS, Liu F, Huang L (2005) Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv Drug Deliv Rev 57:689–698

    CAS  PubMed  Google Scholar 

  • Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, Xu C, Merlin D (2016a) Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy. Mol Ther 24:1783–1796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D (2016b) Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 101:321–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhou X, Zhang H, Yao Q, Liu Y, Dong Z (2016c) Extracellular vesicles in diagnosis and therapy of kidney diseases. Am J Physiol Ren Physiol 311:F844–F851

    CAS  Google Scholar 

  • Zhang M, Xu C, Liu D, Han MK, Wang L, Merlin D (2018a) Oral Delivery of Nanoparticles Loaded With Ginger Active Compound, 6-Shogaol, Attenuates Ulcerative Colitis and Promotes Wound Healing in a Murine Model of Ulcerative Colitis. J Crohns Colitis 12:217–229

    PubMed  Google Scholar 

  • Zhang W, Zhang J, Cheng L, Ni H, You B, Shan Y, Bao L, Wu D, Zhang T, Yue H, Chen J (2018b) A disintegrin and metalloprotease 10-containing exosomes derived from nasal polyps promote angiogenesis and vascular permeability. Mol Med Rep 17:5921–5927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Yuen PS, Pisitkun T, Gonzales PA, Yasuda H, Dear JW, Gross P, Knepper MA, Star RA (2006) Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int 69:1471–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, Gao S, Gu H, Zhu W, Qian H (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4:34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Wang Y, Jin H, Li L (2019) The role of exosome in autoimmune connective tissue disease. Ann Med 51:101–108

    CAS  PubMed  Google Scholar 

  • Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19:1769–1779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, Feng W, McClain CJ, Zhang HG (2015) Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles 4:28713

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants DA041751, DA043164, DA040397 (to S.B.), MH112848, DA043138 (to S.B. and G.H.), DA042704, DA046831 (to G.H.), and DA044087 (to P.P.) from the NIH. The support of the Nebraska Center for Substance Abuse Research is acknowledged. The project described was also supported by the NIH, National Institute of Mental Health (grant 2P30MH062261). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoku Hu, Palsamy Periyasamy or Shilpa Buch.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sil, S., Dagur, R.S., Liao, K. et al. Strategies for the use of Extracellular Vesicles for the Delivery of Therapeutics. J Neuroimmune Pharmacol 15, 422–442 (2020). https://doi.org/10.1007/s11481-019-09873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-019-09873-y

Keywords

Navigation